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Abstract 

This commentary reviews five articles that apply Bayesian ideas to psychological 
development, some with psychology experiments, some with computational modeling, 
and some with both experiments and modeling. The reviewed work extends the current 
Bayesian revolution into tasks often studied in children, such as causal learning and word 
learning, and provides evidence that children’s performance can be optimal in a Bayesian 
sense. There remains much to be done in terms of understanding how representations are 
created, how development occurs, how Bayesian computation might be neurally 
implemented, and in reconciling the new work with older evidence that even skilled 
adults are incompetent Bayesians. 
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A Bayesian Revolution 

A major current revolution in cognitive science concerns the rapid ascendance of 
Bayesian modeling of probabilistic reasoning (Chater, Tenenbaum, & Yuille, 2006). This 
collection of papers on child development is an important component of this revolution, 
but the Bayesian revolution is much more general. Although Bayesian modeling of 
psychology has been done for years, it seems to have recently surpassed both symbolic 
and connectionist methods in frequency of conference presentations and publications. An 
entire special issue of Trends in Cognitive Sciences (July 2006) was devoted to 
probabilistic models of cognition. Bayesian modeling is now being successfully applied 
to a wide range of problems in cognitive science including sensorimotor control (Körding 
& Wolpert, 2006), vision (Yuille & Kersten, 2006), conditioning (Courville, Daw, & 
Touretzky, 2006), induction and inference (Tenenbaum, Griffiths, & Kemp, 2006), and 
language (Chater & Manning, 2006). In each of these areas, Bayesian models are 
accounting for (and in some cases predicting) subtle data patterns in a wide variety of 
psychological experiments.  

A general conclusion emerging from this work is that people (and other animals) 
optimize their performance by conforming to Bayes’ rule that specifies how posterior 
conditional probabilities (of a hypothesis being true, given a data pattern) are computed 
from the product of the prior probability of the hypothesis and the likelihood of those 
data given the truth of the hypothesis. This prior x likelihood product is divided by the 
sum of similar products for all relevant hypotheses. This divisor is a normalizing sum 
known as the marginal probability of the data; it ensures that the posteriors for all 
relevant hypotheses sum to 1.0.  

Part of the appeal of this approach is that, unlike the emphasis on representational 
structure in symbolic models and soft statistical constraints in connectionist models 
(Shultz, 2003), Bayesian approaches emphasize both structure and statistics – essentially 
by computing statistics over structures, in a way that describes how knowledge is 
modified by new evidence. I discuss each of the five papers in order from those that 
emphasize experimental psychology to those that focus on modeling, before addressing 
some general issues about this approach.  

Conditional Intervention 

The article by Schulz, Gopnik, and Glymour concerns the conditional intervention 
principle of causation, which is said to be missing from both mechanistic and covariation 
accounts of causal reasoning. This principle, common to both Bayesian approaches and 
the logic of experimental design, is that knowing that event A causes event B implies that 
intervening on A can change B. In a causal Bayes’ network representation, interventions 
are implemented as additional independent variables that fix the values of certain other 
variables. Knowing a causal graph structure enables inferences about the effects of such 
interventions. Or, if the causal graph structure is unknown as in the case of their first 
experiment, data from interventions enable the learning of this causal structure.  

Schulz et al. showed 4- and 5-year-olds causal interventions in the interesting case of 
interlocking gears, where a gear can be either the cause or the effect of movement of an 
adjoining gear. Given evidence about which gear was switched on, children distinguished 
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one causal chain from another and from common-cause (where a switch turns on both 
gears) and conjunctive (where both a switch and a gear are needed to cause another gear 
to move) structures. Children made this distinction without any mechanistic cues about 
which gear was causing the other one to move. Although Schulz et al. note that the 
common-cause and conjunction problems conflict with normative adult knowledge of 
gears, their preschoolers did not find these problems any more difficult than conventional 
three-term causal chains in which a switch activates one gear that, in turn, activates an 
adjacent gear.  

It might prove interesting to study these tasks developmentally to determine how 
evidence on conditional intervention would interact with knowledge of how gears 
actually work. Using gears with looser fittings could enable diagnosis of such 
mechanistic knowledge by permitting notice of which gear starts moving before the 
other. Based on other evidence of the precedence of understanding of causal mechanisms 
(Shultz, 1982), such knowledge might alter participants’ use of conditional intervention 
evidence. In particular, knowing how gears actually work could raise suspicions about 
evidence inconsistent with this knowledge.  

In a second experiment, Schulz et al. found that knowledge of causal structure 
enabled prediction of the effects of interventions. In their third and final experiment, 
there is some evidence that children could construct their own interventions in play to 
discover relevant causal structure. Considered together, these experiments contribute to 
an already extensive line of research suggesting children’s use of Bayesian principles in 
causal inference. 

Backward Blocking 

In their study, Sobel and Kirkham tested 5-month-old infants in a version of the 
backward-blocking paradigm. Previously, Sobel and colleagues found support for 
backward blocking in preschoolers (Sobel, Tenenbaum, & Gopnik, 2004). Backward 
blocking reverses the normal order of events used in the somewhat more familiar 
blocking paradigm, studied in both animal classical-conditioning and human causal-
inference literatures. In blocking, two stimuli (causes) are presented together with a 
reward (effect), but only after an association has already been formed between one of the 
stimuli on its own and the reward. The previous association between the first-experienced 
stimulus and the reward blocks an association from being formed between the second 
stimulus and the reward. As Sobel and Kirkham point out, many conditioning theories, as 
well as a Bayesian analysis, predict the blocking phenomenon. What many of these 
conditioning theories have trouble with is backward blocking, in which the order of 
training experiences is reversed: training with the two stimuli and the reward now 
precedes training with only one stimulus and the reward. Again, only the stimulus that 
appears alone with the reward is able to evoke a conditioned response. Backward 
blocking is particularly interesting within the domains of causal learning and classical 
conditioning precisely because it is naturally predicted by Bayesian methods and is 
comparatively awkward for conditioning models.  

Sobel and Kirkham framed their experiment even more generally as testing infants’ 
understanding of the Markov assumption, which states that each variable in a causal 
Bayes’ network is independent of all other variables except its effects, conditional on its 
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direct causes. In the case of backwards blocking and ordinary forward blocking, 
participants must distinguish an effective (i.e., unblocked) cause from an ineffective (i.e., 
blocked) cause.  

In a subsequent study, Sobel and Kirkham (in press) found evidence for backward 
blocking in 8-month-olds using an anticipatory eye gaze measure. Those infants were 
familiarized with two events (A and B) that predicted a third event (C), and then observed 
that event A alone predicted either event C (backwards-blocking condition) or event D 
(control condition). When later shown event B, they looked longer at D than at C in the 
backwards-blocking condition , but longer at C than at D in the control condition, thus 
conforming to some of the backward-blocking predictions. I would have thought that an 
idealized prediction would entail no looking difference in the backwards-blocking 
condition (because the association to the ineffective stimulus is merely blocked, not 
driven to negative), but the obtained interaction at least suggested discrimination between 
effective and ineffective stimuli. 

The current Sobel and Kirkham experiment extends this same paradigm to even 
younger, 5-month-old infants. These younger infants looked longer at C than D in the 
backwards-blocking condition but showed no difference in the control condition. What 
does all this mean? Sobel and Kirkham tentatively conclude that sensitivity to the 
Markov assumption develops between 5 and 8 months of age, but I’m not so sure. The 5-
month-olds conform to none of the idealized backward-blocking predictions but do show 
some other systematic looking preferences; 8-month-olds conform to only half of the 
idealized backward-blocking predictions and show an additional, unpredicted looking 
preference (for event D) in the backward-blocking condition. Thus, it is not clear that 
either age group exhibits true backward blocking. Compounding these interpretation 
difficulties are that many test trials (40%) were excluded from analysis due to poor 
attention to familiarization events, and the well-known uncertainties about what looking 
preferences really mean (Cohen, 2004; Haith, 1998). In this context, Sobel and 
Kirkham’s idea to study the infant’s own causal interventions, perhaps through sucking 
rates, seems promising. Because there is evidence that the amount of strength reduction 
in backward blocking is weaker than the amount of reduction in forward blocking, this 
may pose a problem for Bayesian and other models that are insensitive to trial orders 
(Kruschke, in press).  

Example Sampling in Word Learning 

The Xu and Tenenbaum article presents a fascinating empirical study and model that 
usefully extends their previous work on word learning. In deciding how to generalize a 
novel word beyond some given examples, both 4-year-olds and adults were consistent 
with a Bayesian analysis of the way in which examples were sampled. When three 
examples of a novel word were generated by a knowledgeable teacher, participants were 
justified in assuming that these examples represented a random sample from the word’s 
extension, and they consequently restricted their generalization to a specific, subordinate 
meaning. In contrast, when a similar set of three examples was given but only one of 
them was a genuinely random instance of the word meaning (the other two having been 
selected by the learner), they generalized more broadly, to the basic level, just as in 
previous studies that had provided only one example. Results were strong and accounted 
for by an explicit Bayesian model. Presumably, the authors argue, neither rational nor 
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associative theories could predict or explain these results because sampling of examples 
is not part of those theories.  

These results appear to depend on the participants trying to win a prize by picking out 
two correct examples of the new word, an apparent violation of random sampling because 
they would choose examples conservatively in order to be correct. An even stronger test 
of the Bayesian model might involve varying the pragmatic context beyond prize winning 
to generate a wider range of testable predictions.  

The slightly stronger results for adults in the teacher-driven condition only hint at a 
possible developmental effect, but they do raise the question of whether children are so 
concerned with sampling issues from the very beginning of word learning. Because of 
their strength, subtlety, and counter-intuitiveness, these findings are important and 
provocative for other theoretical approaches. 

Learning Overhypotheses 

In their modeling paper, Kemp, Perfors, and Tenenbaum argue that inductive learning 
requires overhypotheses, which they define as abstract knowledge that sets up a 
hypothesis space at a less abstract level, thus constraining the learner’s hypotheses at that 
lower level. Because their paper presents so many novel and complex ideas, it is perhaps 
the most difficult of the batch to summarize concisely and evaluate. Asserting that some 
overhypotheses are innate, the paper focuses on the idea that hierarchical Bayesian 
models can explain how the rest can be learned. This is illustrated by models that learn 
overhypotheses about the shape bias in word learning and about bias variations between 
two different ontological types – objects and substances.  

Smith and colleagues had found that shape tends to be homogeneous within object 
categories (Smith, Jones, Landau, Gershkoff-Stowe, & Samuelson, 2002). Given only 
one exemplar of a novel object category, children extended that category label to 
similarly shaped objects, rather than to objects with similar texture or color to the 
exemplar. Even with novel categories, shape was a reliable indicator of category 
membership. Kemp et al.’s hierarchical models cover the basics of these experiments and 
generate several interesting predictions, e.g., the optimal number of examples per 
category is two (assuming a fixed number of total examples), and learning is sometimes 
faster at higher than lower levels of abstraction, thus explaining why abstract knowledge 
may appear to be innate even when it is not. This could happen in situations where a child 
encounters many sparse or noisy observations such that any individual observation may 
be difficult to interpret, but taken together the observations might support a general 
conclusion. Mirroring some aspects of other psychological data, a related model learns to 
choose a shape match for a solid exemplar and a material match for a non-solid exemplar.  

There are connectionist models of learning shape bias (Colunga & Smith, 2005; 
Samuelson, 2002), but Kemp et al. argue that connectionist models operate at an 
implementation level, whereas Bayesian models are pitched at a computational level (in 
Marr’s terms). Kemp et al. also claim that abstract structures cannot be discerned in 
connectionist models. This is admittedly more difficult than when abstract structures are 
pre-specified as in many Bayesian models, but it can be done even with neural networks 
(Shultz, 2003). Some constraints are built in by the neural modeler, while others can be 
identified by statistical analysis of a network’s knowledge representations. Of course, the 
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representations so obtained may differ from those expected by researchers, but that is part 
of the appeal of connectionist modeling – a neural network may have its own way of 
doing things. In the Bayesian models that I have seen, Bayes’ rule does not generate 
abstract structures – rather it computes statistics over structures designed by the 
modelers. In contrast, connectionist approaches sometimes show how structures are 
created, as when a linear structure is created by a network learning a collection of weights 
of systematically increasing strength (Shultz & Vogel, 2004).  

Kemp et al. note that a common reservation about Bayesian models is that their 
success depends on the modeler’s ability to choose the correct prior probabilities. 
Interestingly, hierarchical models solve this problem in that abstract knowledge need not 
be specified in advance, but can be learned from data. Another important contribution is 
that hierarchical models can integrate bottom-up with top-down approaches. Kemp et al. 
propose to keep adding levels of abstraction until knowledge is simple enough or general 
enough that it can be plausibly assumed to be innate. This is an interesting proposal that 
may well hold in some domains, but in some other domains like physics, highly abstract 
knowledge (e.g., string theory) seems unlikely to be either simple or innate (R. Shiffrin, 
personal communication).  

Kemp et al. acknowledge that the idea of a set of candidate hypotheses being known 
in advance seems inconsistent with the intuition that the repertoire of a learner can grow 
over time, as in constructivist approaches. In the static Bayesian models of their paper, 
the hypotheses are designed by the modelers as probability distributions. Perhaps future 
Bayesian models can be allowed to grow and thereby expand their hypothesis space at 
various levels of abstraction, as some connectionist models do (Shultz, 2003). Later, I 
discuss how this issue is linked to that of creating representations. In any case, this is a 
fascinating paper that makes contact with several important developmental issues and 
makes a number of predictions, some of which are supported, some unsupported, and 
others well worth testing. 

Connectionist Causal Inference 

The odd-men-out in this group of authors are McClelland and Thompson, who do not 
offer a Bayesian product but rather a connectionist model of causal inference experiments 
that were claimed to be out reach for associative models. The psychology experiments in 
question are those with a blicket detector contrasting one vs. two causes (Gopnik, Sobel, 
Schulz, & Glymour, 2001) and backward blocking vs. screening off (Sobel et al., 2004). 
Although it is well known that most of these phenomena can be covered by a variety of 
associative models (Dayan & Abbott, 2001; Read & Montoya, 1999), Bayesian 
researchers have claimed that the unique ability of Bayes to cover backward blocking 
implicates the role of Bayesian inference and even a dedicated causal module. By 
covering the psychological data with a connectionist network, McClelland and Thompson 
counter both of these claims.  

Connectionist networks are based on associative principles, but of course are vastly 
more powerful than classical associations by virtue of employing large, multilayer 
topologies containing units with nonlinear activation functions. The authors employ 
specially designed feedforward networks simulating both slow cortical learning and rapid 
hippocampal learning. In a pre-experiment cortical-learning phase, the network learns 
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which object features predict activation of a blicket detector. With those cortical weights 
frozen, the network then enters a blicket-experiment phase in which particular patterns of 
covariation between candidate causes and effects are presented.  

In a simulation of other psychological work (Schulz & Gopnik, 2004), a similar 
model employs prior beliefs about context-specific cause-effect relations in the form of 
physical or psychological causation but overrides them in specific cases when presented 
with contradictory evidence that events in one domain covary with effects in another 
domain. In both simulations, McClelland and Thompson use existing knowledge to bias 
the newer learning that occurs in the typical causal inference experiment.  

This work is more at the implementation level than are Bayesian approaches and is 
inspired by neuroscience evidence of slow cortical and fast hippocampal learning 
(McClelland, McNaughton, & O'Reilly, 1995). Although these networks are not specially 
designed for causal learning and inference, they are dedicated to using existing 
knowledge in new learning, a powerful and understudied idea. Other knowledge-based 
connectionist systems, that are less specialized and based on constructivist principles, 
recruit existing knowledge and adapt it to learn new tasks (Shultz & Rivest, 2001).  

Future work along this promising line might more strongly justify the nature of the 
pre-experiment training, run multiple networks to gage their variability, and analyze 
network knowledge representations to provide additional insight into their solutions. 
Even if connectionist models can simulate such phenomena, it is noteworthy that these 
phenomena were first identified and predicted with Bayesian approaches. This 
underscores that Bayesian ideas were particularly useful in initiating and directing this 
research. Nonetheless, it will eventually be important to understand how brains 
implement Bayesian learning and inference. 

How Can Incompetent Bayesians be Bayesian? 

The resurgence of interest in Bayesian methods is somewhat surprising given the 
Nobel-Prize-winning work showing that people are rather poor Bayesians, subject to such 
biases as the base-rate fallacy and the representativeness heuristic (Kahneman, Slovic, & 
Tversky, 1982; Kahneman & Tversky, 1996; Tversky & Kahneman, 1974, 1981). There 
is also evidence that people confuse the direction of conditional probabilities, e.g., the 
probability of a symptom given a disease vs. the probability of a disease given a symptom 
(Eddy, 1982; Gluck & Bower, 1988). Even experienced medical professionals deviate 
from Bayes in these ways, creating medical inefficiencies and sometimes disastrous 
outcomes.  
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Clearly, the new evidence that people are Bayesian optimizers needs to be reconciled 
with this older work suggesting that people routinely ignore prior probabilities and 
confuse the direction of conditional probabilities. One hypothesis currently being floated 
to explain this discrepancy is that people are implicit, but not explicit, Bayesians (Chater 
et al., 2006). This seems a bit implausible given that the implicit vs. explicit distinction 
can be rather vague and may not make much of a psychological difference in any case. It 
also seems to conflict with results showing that prior probabilities are more likely to be 
used if made more explicit (Bar-Hillel & Fischoff, 1981; Fischoff, Slovic, & 
Lichtenstein, 1979; Gigerenzer, Hell, & Blank, 1988).  

Interestingly, however, the implicit-explicit hypothesis does seem to be testable. One 
could, for example, design psychology experiments that a) take a modern experiment 
showing implicit conformity to Bayes’ rule and add a condition in which the numeric 
features are explicit, or b) take an older experiment showing explicit deviations from 
Bayesian rationality and add a condition in which the numeric features are implicit. 
According to the implicit-explicit hypothesis, such new conditions should reverse the 
usual trends. One experiment happened to follow strategy b by requiring that participants 
learn a probabilistic diagnosis problem from examples, as opposed to being given 
summary probabilities; there was still evidence of neglecting priors and confusing the 
direction of conditionals (Gluck & Bower, 1988).  

Another, related hypothesis is that what disrupts explicit Bayesian reasoning is the 
very use of probabilities in problem descriptions. There is evidence that people did 
considerably better on otherwise explicit uncertainty problems if the numerical 
information was presented in terms of frequencies, rather than probabilities, although 
participants still didn’t come very close to Bayesian norms (Chase, Hertwig, & 
Gigerenzer, 1998; Gigerenzer & Hoffrage, 1995; Gigerenzer & Todd, 1999).  

Still other explanations for these discrepancies may be worth considering. One is that 
the task is often quite different in experiments that show Bayesian failures than in 
experiments that show Bayesian successes (Y. Takane, personal communication). In 
typical failure experiments, participants largely unfamiliar with Bayes’ rule are given 
priors and likelihoods and asked for posteriors, a difficult computation to perform 
mentally. In typical success experiments, participants perform some other task, such as 
causal learning or word learning. Then a skilled modeler typically tries to match observed 
posterior distributions by constructing plausible priors and likelihoods that fit together in 
Bayes’ rule. If asked to predict the better Bayesian, I would bet on the modeler. The 
nature of the actual computations performed by participants in the success experiments is 
still unknown.  

Model Comparisons 

There is little doubt that Bayesian approaches are making rapid progress in the 
understanding of a wide range of psychological phenomena. There is, however, resistance 
to the claim that Bayesian models uniquely account for the phenomena that they predict 
and explain. Theorists are naturally inclined to make such uniqueness claims because, if 
true, they would enhance the value of a model. But Newell (1990) cautioned that models 
can at best provide sufficient but never necessary explanations, because a better model 
can be expected to appear at some future time. Still, at any particular moment, there can 
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be a strong urge to demonstrate that one’s model is the only extant one to explain 
something. And theoretical competitors often eagerly respond to such challenges. The 
principal responses to Bayesian challenges are currently coming from connectionists, as 
well represented here by the McClelland and Thompson article.  

In theoretical terms, the prospects of connectionist implementation of computational-
level Bayesian ideas seem good. Due to a mathematical equivalence between Bayes’ rule 
and commonly used neural activation functions, each neural unit can be seen as 
computing a posterior probability value, under certain assumptions (Jordan, 1995; 
McClelland, 1998). Moreover at higher levels, competitive-learning networks select the 
most probable of several mutually exclusive hypotheses, and constraint-satisfaction 
networks compute the most probable configuration of hypotheses by increasing goodness 
or equivalently by decreasing energy (McClelland, 1998). Three-layer feedforward 
networks trained with backpropagation of error have been shown to approximate 
Bayesian decision making that minimizes the probability of a decision error. If the 
decision is relatively easy, representations on the hidden layer reflect the Bayesian 
posterior probability distribution (Asoh & Otsu, 1989). So-called Boltzmann machine 
networks, although somewhat neglected because of their slowness, learn a range of 
outputs for a given input such that the probability of each output matches the probability 
of that output in the environment (Ackley, Hinton, & Sejnowski, 1985). Boltzmann 
machines are stochastic networks with bi-directional weights and binary units that turn on 
with a probability equal to a logistic function of the states of their inputs and the 
connecting weights. A faster-learning, feedforward version of stochastic networks has 
been explored (Neal, 1992), and the McClelland and Thompson work shows evidence of 
probability matching by a deterministic feedforward network. There was also a proposal 
to interpret network input and output values as probabilities and adjust network weights 
to maximize log likelihood rather than minimizing error (Baum & Wilczek, 1988). 

If connectionist systems do function at a lower, implementation level compared to 
Bayesian systems, it is likely that the two theoretical approaches can usefully coexist and 
enhance each others’ explanatory accounts. Bayesian analyses could explore the 
computational requirements of a task and identify optimal solutions, whereas 
connectionist models could show how such computations might be accomplished in 
neural tissue. But if the longstanding debate on symbolic vs. connectionist approaches is 
taken as a guideline, we can also expect that Bayesian and connectionist models could, in 
some cases, generate different predictions for particular experiments. Among the 
theoretical differences that could create differential predictions are that non-optimal 
solutions can emerge from neural networks, and that Bayesian networks have a particular 
facility for making inferences in both directions (forward and backward) that 
unidirectional neural networks lack.  

As this literature advances, we might expect renewed efforts to design neural 
networks that can make bidirectional inferences based on what they learn. For example, 
Hinton and colleagues (Hinton, Osindero, & Teh, 2006; Hinton & Salakhutdinov, 2006) 
introduced generative networks called restricted Boltzmann machines that, when chained 
together, enable bidirectional inferences via both top-down and bottom-up weights.  

Thus relations between Bayesian and connectionist systems are varied, deep, and 
deserving of further exploration. Neural networks seem to be good candidates for models 
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that could identify the circumstances under which performance can be Bayesian optimal 
and how brains might achieve this. Notwithstanding these implementation concerns, the 
demonstrated heuristic advantage of also working at the higher, computational level with 
Bayesian ideas should not be underestimated.  

What about Development? 

It is clear from this collection of papers that Bayesian approaches are addressing 
issues and tasks found in studies with children, including learning about causes and 
effects and about words and concepts. What is less clear is whether this work is currently 
addressing developmental issues per se. Most of the simulations and covered experiments 
identify nearly optimal behavior at every age tested, and the one attempt to examine 
development (Sobel & Kirkham) yielded somewhat ambiguous psychological data.  

Perhaps an interesting question is whether children’s performance becomes more 
optimal with development. It is difficult to imagine that they (or any other organisms) are 
always optimal in every domain. Unless, of course, Bayesian modelers choose to adopt a 
nativist stance that everything is optimal from the start. There may be a natural tension 
between developmental change and many current approaches to Bayesian modeling that 
design priors and likelihoods to fit observed posteriors. If a fit can be designed, then the 
hypothesis that children are little Bayesians is seen as confirmed. But it might be 
interesting to view development as a more serious modeling challenge.  

Assuming for the moment that Bayes’ rule itself does not develop, there would seem 
to be two Bayesian mechanisms affording developmental possibilities: the learning of 
priors and likelihoods, and the creation and selection of Bayesian models. Within a 
particular Bayesian model, performance could improve with better estimates of priors and 
likelihoods, and such improvements might explain some quantitative aspects of 
development. But if a Bayesian model is inappropriate, then no amount of parameter 
fitting would produce optimal performance. In such cases, qualitatively different models 
would need to be created and the best one selected. Although model selection might 
result from Bayesian inference, fully automatic creation of models, whether Bayes 
networks or hypotheses for new levels in a hierarchical model, seems beyond the ability 
of Bayes’ rule itself, which is why hypotheses and structures are designed by the 
researcher in current Bayesian models. Making these complimentary processes of 
parameter fitting and model creation more fully automatic and relating them to 
developmental change could make an important contribution.  

Interestingly, probability estimation and model building seem analogous to 
quantitative and qualitative developmental mechanisms, respectively, in constructive 
neural networks. Constructive networks start with minimal structure and recruit single 
hidden units or previously-learned networks as needed to reduce network error (Shultz, 
2003). Change occurs through quantitative adjustment of connection weights within a 
particular network structure or, when that fails to solve the current problem, through 
qualitative recruitment of additional computational devices. This recurring cycle of 
adjustments and recruitments creates novel representational structures that the network 
could not previously express. Perhaps there are computational lessons in these 
mechanisms that could be of use to Bayesian modelers of psychological development.  

Conclusion 
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The rule of Rev. Bayes is already being used to tell a very interesting story about 
cognition, perception, language, and action. But it is not the whole story, particularly 
when it comes to complex representations, development, and brain implementation. What 
will be especially interesting is to see how Bayesian approaches can be integrated with 
advances in knowledge representation, artificial neural networks, and neuroscience.  
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