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Overview

• The fundamental question is this: If we have a covariate
z(s), how much of its variation over s should we use to
fit the response y(t) at fixed t?

• In the simplest case, we only use z(t). We call this the
concurrent model because it predicts y at time t by z at
time t. We might call this “now-casting.”

• If we want to use the behavior of z over an interval of
values s, or over all values, things are more complex
because this model has, effectively, an infinite amount
of fitting power.



The full model for log . . .

The historical model . . .

Lip acceleration . . .

Summary

Where to we go from here?

Home Page

Title Page

JJ II

J I

Page 3 of 27

Go Back

Full Screen

Close

Quit

1. The full model for log precipitation
• We now want to predict the log precipitation profile
LogPreci(t) at time t from the entire temperature pro-
file Tempi(s).

• The fitting criterion is

LogPreci(t) = α(t) +

∫ 365

0
Tempi(s)β(s, t) ds + εi(t) .

• β(s, t) indicates the influence of temperature at time s
on precipitation at time t.

• We can use the whole temperature profile because the
data are periodic.

• We have already learned from predicting total log pre-
cipitation that we will have to apply a roughness penalty
to β(s, t) as a function of s.

• What about its variation as a function of t?
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Log precipitation functions
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Temperature functions
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• We apply two harmonic acceleration roughness penal-
ties to β(s, t), one for its variation in s, and one for its
variation in t.

• Let’s see what happens with fairly light penalties on
both types of variation.

• We’ll look at β(s, t) and at the fit to the log precipitation
data for Vancouver.
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β(s, t) has light penalties on s and t

• β(s, t) is impossible to interpret.
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β(s, t) has light penalties on s and t

• And we seem to have over–fitted Vancouver’s data.

• Let’s increase the smoothing parameter for s.
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β(s, t) has heavy penalty on s and light
on t

• β(s, t) is interpretable as a function of s but impossible
to understand in t.
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β(s, t) has heavy penalty on s and light
on t

• We now have a more reasonable fit to Vancouver’s data,
but the fitting function is too rough.

• Let’s increase smoothing parameters for both s and t.
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β(s, t) has heavy penalties on both s
and t

• β(s, t) is now smooth in both s and t.



The full model for log . . .

The historical model . . .

Lip acceleration . . .

Summary

Where to we go from here?

Home Page

Title Page

JJ II

J I

Page 12 of 27

Go Back

Full Screen

Close

Quit

β(s, t) has heavy penalties on both s
and t

• The fit is reasonable and also smooth.
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What we see

• Penalizing the roughness of β(s, t) as a function of s
prevents over-fitting.

• Penalizing the roughness of β(s, t) as a function of t
allows us to see how the influence of temperature on
precipitation varies from one time to another.

• We can now see that temperature is much more influ-
ential in the winter than in the summer.

• The rapid oscillation in s suggests that it is a derivative
of temperature that really influences precipitation.
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The intercept function α(t)
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2. The historical model and other
possibilities

• We were able to use all of z(s) to predict y(t) in the
weather example because the data were periodic.

• In nonperiodic situations, it would only be meaningful to
use the values of s up to t.

y(t) = α(t) +

∫ t

t−δ(t)
z(s)β(s, t) ds + ε(s)

• For the lower limit of integration t − δ(t), the width δ(t)
of the interval of integration can vary over t or can be
constant.

• We can call this the historical linear model.

• See Ramsay and Silverman (2002) for an example.
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• More generally, we can integrate over a set Ωt that
varies with t,

• and also permit the covariate function z to vary over t
as well,

y(t) = α(t) +

∫
Ωt

z(s, t)β(s, t) ds + ε(s)
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• How do we construct basis function systems for com-
plex regions of integration?

• The triangular mesh algorithms used in finite element
methods to solve partial differential equations are nat-
ural here.

• Triangular meshes adapt well to nonstandard bound-
aries.

• Triangular basis functions also can be regularized.

• The PDEtools toolbox in Matlab contains powerful func-
tions for mesh generation.
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3. Lip acceleration predicted from
EMG signal

• Malfait and Ramsay (2004) studied how the accelera-
tion of the lower lip while saying ”bob” was related to
the EMG signal record from the depressor lip muscle.
(see also Ramsay and Silverman, 2002)

• Each of 32 replications lasted for about 0.7 seconds.

• EMG is an indirect indication of muscle activation.

• It was hoped to learn something about the brain con-
trols speech production.
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32 replications of lip position and
acceleration and of EMG signal
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The feed–forward model

• Only feed–forward effects of EMG on acceleration are
of interest.

• The model is

lip(t) = α(t) +

∫ t

t−δ

EMG(s)β(s, t) ds + ε(s)

• Regression function β(s, t) is defined over the triangular
region 0 ≤ s ≤ t; 0 ≤ t ≤ 0.7.

• How far back should we allow for an influence? How
large should the lag δ be?



The full model for log . . .

The historical model . . .

Lip acceleration . . .

Summary

Where to we go from here?

Home Page

Title Page

JJ II

J I

Page 21 of 27

Go Back

Full Screen

Close

Quit

The correlation surface
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The finite element basis for β(s, t)

• The finite element basis for functions defined over two
arguments uses piece–wise linear functions defined
over a triangular mesh.

• Triangular meshes can easily adapt to complex bound-
aries. Our problem here is particularly easy.

• The coefficient matrices become more and more sparse
as the number of triangles increases.

• Sparse matrix computation, available in Matlab, makes
for fast solutions.
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A triangular mesh for the lip/EMG
problem
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The regression function surface for lag
δ = 5 triangles
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Standard error of estimate functions
for various lags
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4. Summary
• When both response and covariates are functional,

there are a lot of modelling possibilities.

• Using the full variation in a functional covariate z(s) is
only useful if we regularize the solution, either at the
level of the regression coefficient β(s, t), or at the level
of the response y(t).

• Using the full variation in the covariate usually only
makes sense for periodic problems.

• A feed–forward model is more likely for nonperiodic
functional regressions.

• Estimating the amount of functional history to use is an
important issue.

• There is a lot more work to do in this exciting area!
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5. Where to we go from here?
• What if we want to use derivatives, Dy(t) and Dz(t), in

our models?

• What about functional variables that interact with each
other, such as we find in input/output systems with feed-
back?

• Nonlinear functional models?

• We have only tickled the ear of the elephant.
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