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Overview

@ We want to fit data by a solution to a system of nonlinear
differential equations (DIFE’s).

@ We ignore DIFE’s so simple that they can be solved, such
as linear constant coefficient systems. These are already
well taken care of.

@ Our approach is a generalization of smoothing methods
combined with a computational approach involving a
modification of profiling.

@ We will show results for simulated data from two test-bed
problems.

@ Data from a chemical reactor producing nylon is analyzed
to estimate parameters defining equations for reaction
kinetics.



Two problems

Outline

e Two test bed problems
@ The neural spike potential equations
@ The tank reactor equations
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The neural spike potential equations

The FitzHugh-Nagumo model

@ This simple two-component system is widely used to
model properties of actual neural networks.

@ They describe the reciprocal dependencies of the voltage
V across an axon membrane and a recovery variable R
reflecting outward currents, and

@ the impact of a time-varying external excitation E.

@ In the typical experiment only V will be measured, but we
will consider both to be available.
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The neural spike potential equations

The FitzHugh-Nagumo equations

@ Here is the system:

3

DV:C(V—\g+R>+E(t)

L (v_atbR)

DR = ——
(9

@ V is voltage across axon membrane
@ R reflects outward currents
@ E reflects external excitation

@ The dynamics of the system are controlled by parameters
a, bandc.

@ The system would be linear except for the V3 term.
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The neural spike potential equations

A FitzHugh-Nagumo solution

FitzHugh Nagumo Equations: vV
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FitzHugh Nagumo Equations: R
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The neural spike potential equations

What we see

@ The solution quickly reaches a steady state where it is
periodic with an asymmetric pattern.

@ The parameters control the amplitude and period of the
response.

@ The second order van der Pol equation is a closely related
system.
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The neural spike potential equations

The response surface can be complex

@ Differential equations be simple, and yet define extremely
complex behavior.

@ This is reflected in the response surface of these equations
as a functions of parameters a and b.
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The neural spike potential equations

A FitzHugh-Nagumo response surface
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tank reactor

The tank reactor model

@ A continuously stirred tank reactor CSTR consists of a tank
surrounded by cooling jacket and an impeller which stirs
the contents.

@ ltis a basic piece of equipment for a chemical engineer.
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tank reactor

The tank reactor variables

@ A fluid is pumped into the tank containing a reagent with
concentration Cj, at a flow rate Fj, and temperature Tj,.

@ Inside the tank a reaction takes place, producing a product
that leaves the tank with concentration C,,; and
temperature Ty

@ A coolant enters the cooling jacket with temperature T,
and flow rate Fgyo.

@ Temperature T, is can be cheaply measured with little
delay and considerable accuracy, but concentration Coyt
requires time and money.
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tank reactor

The tank reactor equations

DCout = —Bcc(Tout)Cout + FinCin
D Tout = _ﬂ TT(F cool Fln) Tout + ﬁ TC( Tout) Cout
+FinTin + a(Fcool) Teool-

@ The concentration equation is linear and forced by Cj,.

@ The temperature equation is nonlinear because of the role
of Tout in coefficient Brc( Tour) Multiplying Cout-
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tank reactor

The tank reactor coefficients

@ The dynamics of the system are controlled by these four
coefficient functions:

Bee(Tout; Fin) = /fexp[_1o47'(1/Tout —1/Trer)] + Fin
5TT(Fcoola /n) = a(Fcool) + Fin
Bre(Tout) = 1308cc(Tout, Fin)

)

a(Feoor) = aFg;U/(Fcoo/ =+ aFé’oo,/Z),

@ These functions depend on two paired unknown
parameters:

@ kand 7
@ aand b
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Tank reactor inputs
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Each input in turn is stepped up, down and back to baseline.
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tank reactor

Tank reactor outputs

QOutput concentration (red = hot, blue = cool)
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The experiment is run at two coolant temperatures: hot and
cool.
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tank reactor

What we see

@ When temperatures are moderate, the reactor responds
smoothly to changes in input.

@ But when temperatures are higher, sharp high frequency
oscillations emerge, and are particularly troublesome for a
change in coolant temperature.

@ Can we predict reactor response at high temperatures
from data collected and parameters estimated under the
safer cool regime?

@ Can we do this using only temperature measurements?
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© simulated data results
@ FitzHugh-Nagumo results
@ Tank reactor results
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FitzHugh-Nagumo results

Results for the Fitzhugh-Nagumo equations

@ The solution to be estimated was determined by
{a,b,c} = {0.2,0.2,3} and initial values
{V(0), R(0)} ={-1.1}.

@ The paths were measured at 0.05 time units on the interval
[0,20].

@ Noise was then added to these values with standard
deviation 0.5.

@ 500 simulated samples were analyzed.
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FitzHugh-Nagumo results

Summary statistics for parameter estimates

a b c
True value 0.2000 0.2000 3.0000
Mean value 0.2005 0.1984 2.9949

Std. Dev. 0.0149 0.0643 0.0264
Est. Std. Dev. | 0.0143 0.0684 0.0278
Bias 0.0005 -0.0016 -0.0051

Std. Err. 0.0007 0.0029 0.0012




Simulation results
@0000

Tank reactor results

Simulations for the tank reactor equations

@ Parameters and initial values for paths were set to those
provided by a well known text on control engineering, T. E.
Marlin (2000) Process Control. New York: McGraw-Hill.

@ Parameter b is impossible to estimate because of its
correlation with a, and therefore was fixed 0.5.

@ 1000 simulated samples were analyzed.
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A typical set of tank reactor da
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Tank reactor results

Path estimations, cool mode

Concentration (red = true, blue = estimated)
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Tank reactor results

Path estimations, hot mode

Concentration (red = true, blue = estimated)
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Data for only temperature collected in the cool mode were used.
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Tank reactor results

Summary statistics for parameter estimates

True value 0.4610 0.8330 1.6780
Mean value 0.4610 0.8349 1.6745

Std. Dev. 0.0034 0.0057 0.0188
Est. Std. Dev. | 0.0035 0.0056 0.0190
Bias 0.0000 0.0000 -0.0001

Std. Err. 0.0002 0.0004 0.0012
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e Fitting data with the nylon equations



Nylon results

The nylon experiment

@ Nylon and other polymers are created by a chemical
reaction in which molecules with two special types of
endings chain together to form long molecules.

@ The reaction requires water to form the molecules.

@ The long molecules can also be broken up, releasing
water.

@ Temperature and water are critical control variables.

@ There were five runs of the experiment at different
temperature settings.

@ These data were collected in the laboratory of Prof. K.
MacAuley of the Dept. of Chemical Engineering at Queen’s
University, Kingston, Canada.

@ The concentration measurements for variables A and C
cost about $30,000 to obtain.



Nylon results

The variables in the nylon equations

@ A: molecules with an amine group end (measured)
@ C: molecules with a carboxyl group end (measured)

@ L: Nylon, a long chain of molecules (a polymer) (not
measured)

@ W: Water, indirectly adjusted in the experiment
@ The variables are related by the mass balance equation

A+C=L+W



Nylon results

Nylon equations

DA = DC = —kp(T)(CA - Ki(v‘;))

DW = ky(T) (CA - KS(A;)) — k(W = Weg)

@ variables and known constants are black

@ parameters to be estimated are in red

@ experimentally manipulated and measured constants and
variables are in blue
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Fits to the data
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Resources

Software and resources

@ All the results were computed in Matlab.

@ Matlab functional data analysis software was also used.
These and a set of software routines that may be applied
to any differential equation is available from the URL:
http://www.functionaldata.org.

@ A paper is available from the URL.:
http://www.functionaldata.org.

@ J. O. Ramsay and B. W.Silverman (2005) Functional Data
Analysis, Second Edition. New York: Springer.
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