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We need a flexible method for constructing functions from
noisy discrete data.
The method should be able to reproduce any feature that
interests us in a function, no matter how complicated.
The computation should be reasonably fast, even when
tens or hundreds of thousands of discrete values are
available.
In this talk, we consider the most popular technique, basis
function expansions.
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We describe two basis function systems in detail:
Fourier bases
B-spline bases

as well as some other important systems.
We also ask about how to estimate derivatives,
including a bad idea.
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A basis function system is a set of K known functions φk (t)
that are:

linearly independent of each other
can be extended to include any number K in the system

A function x(t) is constructed as a linear combination of
these basis functions:

x(t) =
K∑

k=1

ckφk (t)

If vector c contains the coefficients, and the vector φ
contains the basis functions, then

x(t) = c′φ(t).
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Basis function systems and derivatives

In principle, computing derivatives is easy:

Dmx(t) =
K∑

k=1

ckDmφk (t)

but not all basis functions have derivatives that behave
reasonably, or can even be calculated.
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The monomial basis

Polynomials are perhaps the oldest and best known basis
function expansion.
A polynomial is the form

x(t) =
K∑

k=1

ck tk−1.

The basis functions are the monomials: 1, t , t2, t3, . . .

Polynomials can work fine for simple problems only
requiring K = 5 or so, but have severe problems tracking
sharp localized features, and can run into computational
problems for unequally spaced data.
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Polynomials and derivatives

Derivative estimation is a big problem for polynomials
because their derivatives become less and less complex,
the higher the order of derivative.
For a polynomial of degree m, the derivative of order m + 1
is zero.
But in most real–world systems, derivatives become more
complex as the order of the derivative increases.
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The basis functions are sine and cosine functions of
increasing frequency:

1, sin(ωt), cos(ωt), sin(2ωt), cos(2ω(t), . . .

sin(mωt), cos(mω(t), . . .

The constant ω defines the period of oscillation of the first
sine/cosine pair. This is ω = 2π/P where P is the period.
K = 2M + 1 where M is the largest number of oscillations
in period P that are required.
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Advantages of Fourier basis functions

Fourier bases were the only alternative to monomial bases
until the middle of the 20th century.
They have excellent computational properties, especially if
the times of observation are equally spaced.
They are natural for describing data which are periodic,
such as the annual weather data, gait cycle data and so
on.
Their periodicity is a problem, however, for nonperiodic
data, such as the growth curves.
But the Fourier basis is still the first choice in many fields,
such as signal analysis, even when the data are not
periodic.



Basis functions Fourier Spline Other Differencing Roughness penalties Defining roughness Penalized LS Spline Smoothing Choosing λ A simulation study Confidence limits

Fourier bases and derivatives

Computing derivatives is easy since

D sin(ωt) = ω cos(ωt)

D cos(ωt) = −ω sin(ωt)

We say that this system is closed under differentiation; the
derivative of a Fourier series expansion is also a Fourier
series expansion.
The Fourier series is infinitely differentiable.
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Splines are polynomial segments joined end-to-end.
The segments are constrained to be smooth at the join.
The values of t at which adjacent segments are joined are
called knots.
The order m (order = degree + 1) of the polynomial
segments and
the location of the knots define the spline basis system.
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An example of spline functions

The following figure shows splines of three orders, each
with three knot values.
The splines are defined so as to offer the best fit to a sine
function, shown in the left panels.
How well the derivatives of these splines fit the derivative
of the sine, the cosine, is shown in the right panels.
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Derivatives and splines

Because splines are constructed from polynomials,
computing their derivative at any point between two knots
is simple. There, the highest nontrivial order of derivative is
m − 1 for order m splines.
At a knot, it is usual to require that the derivatives up to
order m − 2 also join. That is, the derivative of order m − 2
of a spline function is usually continuous.
The most popular choice of order is 4, implying continuous
second derivatives. The second derivatives have straight
line segments.
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Spline functions and degrees of freedom

How can we quantify the flexibility of a spline function of
order m?
In the usual case, there are m − 1 constraints on the
adjacent polynomials, corresponding to the requirement
that m − 2 derivatives plus the function values are required
to match at the knot.
Given the first segment, with m degrees of freedom, this
means that we gain one degree of freedom with each knot
to the right of the first segment.
The total number of degrees of freedom is

order m + number of interior knots
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How are knots chosen?

Knots are often spaced equally.
But two important rules should be observed in placing
knots:

Place more knots where you know there is strong
curvature, and fewer where the function changes slowly.
But be sure that there is at least one data point in any
interval.

Later, we will consider placing a knot at each point of
observation.
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Spline functions and coincident knots

Sometimes we need less smoothness at a specific point.
For example, we will see problems where a function needs
to be continuous at a point, but its derivative is
discontinuous.
When multiple knots are placed at the same point, the
convention is that a spline loses one derivative for each
additional knot.
An order 4 spline with 3 coincident knots is continuous at
that point, but does not have a first derivative.
An order 4 spline with 4 coincident knots is discontinuous
at that point.
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There are three coincident knots at the second location for the
refinery data to permit a discontinuous first derivative.
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The B-spline basis system

Any spline function with K degrees of freedom can be
expressed as a linear combination of K basis spline
functions .
Among many possibilities, the B-spline system, developed
in the 1940’s, is the most popular.
B-spline basis functions are themselves spline functions.
Any B-spline basis function is positive over at most m
adjacent intervals.
This ensures that computation is fast for even tens of
thousands of basis functions.
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13 order 4 B-spline basis functions
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Basis systems can be constructed in many other ways:
Power Basis: tλ1 , tλ2 , tλ3 , . . . where the powers are distinct

but not necessarily integers or even positive.
Exponential Basis: eλ1t ,eλ2t ,eλ3t , . . . where the λ’s are

distinct.
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Wavelet bases

A recent development, wavelet bases combine some of the
advantages of both Fourier and B-spline bases.
They are especially good at tracking sharp highly localized
features,
and separating a signal into components which reflect both
specific frequencies and specific locations on the t-axis.
Because of their computational efficiency, they are often
used for image compression.
For example, the FBI uses wavelets to store fingerprint
information.
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The constant basis

Let’s not neglect the simplest basis system of all: consisting of
a single basis function φ1(t) = 1. We often need to fit a
constant to data.
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Empirical basis functions

We will look at functional principal components analysis
later.
This is essentially a method for estimating orthogonal
basis functions from functional data that capture as much
of the variation as possible given a fixed number of basis
functions K .
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Designer or customized basis functions

Later, when we come to differential equation models, we
will see how to tailor a basis system to the known
characteristics of a set of data.
Designer bases like these can be much more efficient at
representing functional variation.
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It is common practice to estimate a derivative by taking the
difference between adjacent function values divided by the
difference between adjacent time values:

∆x(ti) =
x(ti+1)− x(ti)

ti+1 − ti

The second derivative can be estimated by applying this
differencing process to the first difference ratios.
This only works for very smooth functions observed
without appreciable error.
Even the smallest amount of error is greatly magnified by
differencing.
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The following displays show what happens when we
difference a record of pen position that has a
signal-to-noise ratio of 500-to-1, and which is sampled 200
times per second.
The third order difference ratios are virtually worthless as
an estimates of the values of the third derivative, which we
will need in later analyses.
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The pen position function
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The first difference ratios
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The second difference ratios
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The third difference ratios
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Where we go from here

Now we need to see how to fit a basis function expansion
to noisy data.
The simplest process is through least squares
approximation.
This is essentially the use of multiple regression analysis,
where the covariates are the basis function values
corresponding to time sampling points.
This works reasonably well, but we will see how to do even
better later.
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Controlling smoothness by limiting the number of basis
functions is discontinuous; roughness penalties allow
continuous control over smoothness.
We want to be able to define “smooth” in ways that are
appropriate to our problems.

We may want a smooth derivative rather than just a smooth
function.
What is smooth in one situation is not smooth in another.
Smoothness has to be defined differently for periodic
functions, for example.

We find that roughness penalty smoothing gives better
results.
Roughness penalties are connected to fitting data by a
differential equation; they are models for process
dynamics.
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We have two competing objectives:
1 Fit the data well; keep bias low.
2 Keep the fit smooth so as to

filter out noise
get better estimates of derivatives

Mean squared error = Bias2 + Sampling Variance

We can often greatly reduce MSE by trading a little bias off
against a lot of sampling variance.
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Quantifying roughness

The classic: curvature in the function

PEN2(x) =

∫
[D2x(s)]2 ds .

[D2x(s)]2 measures the squared curvature in x at s. This
penalty measures total squared curvature.
Curvature in acceleration:

PEN4(x) =

∫
[D4x(s)]2 ds

These two penalties also define what we mean by
“smooth”; any function that has zero penalty is
“hyper–smooth.” A straight line for the classic, a cubic
polynomial for the acceleration penalty.



Basis functions Fourier Spline Other Differencing Roughness penalties Defining roughness Penalized LS Spline Smoothing Choosing λ A simulation study Confidence limits

Harmonic acceleration

If the process is periodic, it is natural to think of a
constant + sinusoid as “hyper–smooth”.
This suggests that we use

PENH(x) =

∫
[D3x(s) + ω2Dx(s)]2 ds

where 2π/ω is the period.
The functions 1, sin(ωt), and cos(ωt) all have zero
penalties, as does any linear combination of them.
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Some questions to think about

Writing Lx(s) = D3x(s) + ω2Dx(s), we have

PENH(x) =

∫
[Lx(s)]2 ds

Can we think of other differential operators L that might be
useful?
If we have a small number of “hyper–smooth” functions in
mind, can we find a differential operator L that will assign
zero penalty to them?
Can use the data themselves to tell us something about
the right differential operator L?
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Notation:
y is the n-vector of data yj to be smoothed.
t is the n-vector of values of tj .
W is a symmetric positive definite weight matrix.
x(t) is the n-vector of fitted values, and x(t) has the basis
function expansion

x(t) =
K∑
k

ckφk (t) = c′φ(t)

The penalized least squares criterion is

PENSSEλ(x |y) = [y− x(t)]′W[y− x(t)] + λPEN(x) ,
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How the smoothing parameter works

Smoothing parameter λ controls the amount of roughness.
As λ→ 0, roughness matters less and less, and x(t) fits
the data better and better.
As λ→∞, roughness matters more and more, and x(t)
becomes more and more “hyper–smooth.”
Our job is to find the right value where we trade enough
bias off against sampling variance to minimize mean
squared error.



Basis functions Fourier Spline Other Differencing Roughness penalties Defining roughness Penalized LS Spline Smoothing Choosing λ A simulation study Confidence limits

The roughness penalty matrix

For the classic penalty,

PEN2(x) =

∫
[D2c′φ(t)]2 dt

= c′
∫

[D2φ(t)][D2φ′(t)] dt c

= c′Rc (1)

The order K roughness penalty matrix R is

R =

∫
[D2φ(t)][D2φ′(t)] dt =

∫
(D2φ)(D2φ′)

substitute L for D2 for more general roughness penalties.
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The roughness penalized estimates for c and y

Φ is the n by K matrix of basis function values φk (tj).
The penalized least squares criterion becomes

PENSSE(y |c) = (y−Φc)′W(y−Φc) + λc′Rc .

This is quadratic in c, and is minimized by

x̂ = (Φ′WΦ + λR)−1Φ′Wy .
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The smoothing matrix Sφ,λ

The data-fitting vector ŷ = x(t) is

ŷ = Φ(Φ′WΦ + λR)−1Φ′Wy ,

Smoothing matrix

Sφ,λ = Φ(Φ′WΦ + λR)−1Φ′W

maps the data into the fit, and has many useful
applications.
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Equivalent degrees of freedom df (λ)

It is useful to compare a fit using a roughness penalty to
one using a fixed number of basis functions.
A measure of the “degrees of freedom” in a roughness
penalized fit is

df (λ) = trace Sφ,λ

This corresponds to the number of basis functions K in an
un–penalized fit.
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The term “smoothing spline” has come to mean the
following procedure:

Use natural or B-spline basis functions.
Place a knot at each data point tj .
Use a penalty on D2x .

However, we find that
We can often achieve the same results by just using a
number K of basis functions that is “large” relative to the
resolution of the data.
We certainly want to be able to play with alternative
roughness penalties.
Other basis functions systems are also desirable.
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Two estimates of an acceleration curve.
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Cross–validation for choosing the smoothing
parameter λ

In cross–validation,we
set aside a subset of data, the validation sample
call the balance of the data the training sample
fit the model to the training sample
assess fit to the validation sample
choose the λ value that gives the best fit



Basis functions Fourier Spline Other Differencing Roughness penalties Defining roughness Penalized LS Spline Smoothing Choosing λ A simulation study Confidence limits

We can also, for a sequence of values of λ,
set aside each observation (tj , yj ) in turn
fit the data with the rest of the sample,
sum fits to the left out values to get a cross–validated error
sum of squares CV(λ).
select the λ value that minimizes CV(λ).
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Generalized cross–validation for choosing the
smoothing parameter λ

Cross-validation is time-consuming, and tends too often to
under–smooth the data.
The generalized cross-validation criterion is

GCV (λ) =
( n

n − df (λ)

)( SSE

n − df (λ)

)
where df is the equivalent degrees of freedom of the
smoothing operator.
The right factor is just the unbiassed estimate s2

e of
residual variance familiar in regression analysis.
The left factor further “discounts” this measure further to
allow for the influence of optimizing with respect to λ.



Basis functions Fourier Spline Other Differencing Roughness penalties Defining roughness Penalized LS Spline Smoothing Choosing λ A simulation study Confidence limits

Outline

1 Representing functions by basis functions
2 The Fourier basis
3 The spline basis
4 Other basis function systems
5 Estimating derivatives by differencing
6 Why do we use roughness penalties?
7 Defining roughness
8 Penalized least squares estimation
9 Spline Smoothing

10 Choosing smoothing parameter λ
11 A simulation study
12 Confidence limits



Basis functions Fourier Spline Other Differencing Roughness penalties Defining roughness Penalized LS Spline Smoothing Choosing λ A simulation study Confidence limits

How does GCV work in a simulated data example?
A parametric growth model by Pierre Jolicoeur at the
Université de Montréal offers a nice test problem.
We simulate 1000 samples, each observation being a
random sample from realistic Jolicoeur models plus
realistic error.
We smooth using a range of values of λ, and note the
value giving the best value of GCV.
How well do we estimate the Jolicoeur acceleration
curves?
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20 Jolicoeur acceleration curves
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GCV and Root-Mean-Squared-Error
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What we see

In the top panel, GCV favors λ = 0.1.
This is about right for optimal MSE for ages 8 and 16, but
less smoothing would be better for age 12, in the middle of
the pubertal growth spurt.
One smoothing parameter value does not work best for all
ages, but
The value chosen by GCV certainly does a fine job.
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RMSE, Bias, and Standard Error
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What we see

The performance of the spline smoothing estimate
deteriorates badly at the extremes.
The sharp curvature at the pubertal growth spurt also
causes some problems.
Except at the extremes and PGS, the bias is negligible.
The standard error is about the same as RMSE.
Would we do better at the extremes if the smooth
respected monotonicity?
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Because the mapping from data y to the coefficient vector
c is linear, it is a simple matter to work out the standard
error of any linear functional of a curve defined by c.
The variance of a quantity ρ(x) associated with linear
mapping M from ĉ to ρ̂(x) is

Var[ρ̂(x)] = MSφ,λΣeSφ,λM′

Simple, that is, if we can get a good estimate of the
variance-covariance matrix Σe of the residual vector.
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95% point–wise confidence limits for growth
acceleration
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Summary

Roughness penalization, also called regularization, is a
flexible and effective way to ensure that an estimated
function is “smooth.”
We can tailor the definition of “smooth” to our needs.
The roughness penalty idea extends to any type of
functional parameter that we want to estimate from the
data.
Roughness penalties are one of the main ways in which
we exploit the smoothness that we assume in the process
generating the data.
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Roughness and energy

“Roughness” is like energy in physics
Roughness requires energy to produce, and smoothness
implies limited energy.
Where we imagine that the amount of energy behind the
data is limited, it is natural to assume smoothness.
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