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1. Predicting precipitation profiles
from temperature curves

• Precipitation is much harder to predict than tempera-
ture.

• It comes in two main forms:

– Drizzle: Large low pressure zones drop moisture
over many hours or days.

– Storms: Convective, short violent storms with a lot
of precipitation in a hurry, and spatially localized.

• Precipitation tends to be seasonal; more in the spring
and fall than in the summer and winter.
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A model

• We can assume that climate zone is important.

• We will predict log precipitation; logging stabilizes vari-
ance and eliminates the positivity constraint.

• We will use the difference TempResmg(t) between a
temperature profile and the mean for the climate zone
as a function covariate.

• We can extend the functional ANOVA model to

log[Prec mg(t)] = µ(t)+αg(t)+TempResmg(t)β(t)+εmg(t)

• We call this model concurrent because it assumes that
the temperature today affects today’s precipitation.
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The functional data

• Where precipitation was recorded as 0 mm, we
changed it to 0.05 mm, half the minimum positive value.

• We used 11 Fourier series basis functions for precipita-
tion with no roughness penalty.

• We used 21 Fourier series basis functions for tempera-
ture with no roughness penalty.
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Log precipitation profiles
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The fitting criterion and some results

• The fitting criterion was the unpenalized error sum of
squares

LMSSE(µ, αg, β) =∫ N∑
k,g

[LogPrec kg(t) − µ(t) − αg(t)

−TempReskg(t)β(t)]2 dt

• The resulting root–mean–squared–residual was 0.19
mm.

• When we dropped TempRes(t) from the model, this in-
creased to 0.20 mm.

• As we see in the following plot, the only place where
temperature appears to make a contribution is in mid–
winter.
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The estimated regression functionβ(t)
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The fit to Vancouver’s data
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A probe for the winter effect

• The confidence limits are point–wise; we need a mea-
sure of the temperature influence accumulated over the
winter months.

• Here is a probe that works:∫ 365

0
cos[2π(t − 64.5)/365]β(t) dt = 2.32 ,

• The estimated standard error of this probe is 0.77, giv-
ing a t-ratio of 3.0.

• It appears that elevated temperatures in mid-winter go
along with increased precipitation.
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2. Fitting the concurrent model

• Here is a general statement of the current func-
tional/functional model:

yi(t) =

q∑
j=1

zij(t)βj(t) + εi(t) .

• or in matrix notation:

y(t) = Z(t)β(t) + ε(t) ,

• We will use a penalized error sum of squares criterion:

LMSSE(β) =∫
[y(t) − Z(t)β(t)]′[y(t) − Z(t)β(t)] dt

+

p∑
j

λj

∫
[Ljβj(t)]

2 dt .
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The basis function expansions forβj(s)

• Let regression function βj(s) have the expansion

βj(s) = b′
jθj(s)

in terms of Kj basis functions θjk(s).

• Some of the independent variables can be scalar; in this
case the basis for their βj(s)’s is the constant basis;

θj1(s) = 1
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• Defining Kβ =
∑q

j Kj, we construct vector b of length
Kβ by stacking the coefficient vectors vertically, that is,

b = (b′1, b
′
2, . . . , b

′
q)

′ .

• Now assemble q by Kβ matrix function Θ as follows:

Θ =


θ′

1 0 · · · 0
0 θ′

2 · · · 0
... ... · · · ...
0 0 · · · θ′

q

 .

• We can now express our model as

y(t) = Z(t)Θ(t)b + ε(t) .
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• We also need to arrange the order Kj roughness
penalty matrices

λjRj = λj

∫
Lθj(t)Lθ′

j(t) dt

into the symmetric block diagonal matrix R of order Kβ:

R =


λ1R1 0 · · · 0
0 λ2R2 · · · 0
... ... · · · ...
0 0 · · · λqRq

 . (1)
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The normal equations

•

[

∫
Θ′(t)Z′(t)Z(t)Θ(t) dt + R]b =

[

∫
Θ′(t)Z′(t)y(t) dt]

• The numerical integration in these equations is not as
difficult as it seems. The scalar functions

ωj`(t) =

N∑
i

zij(t)zi`(t)

play the role of weighting functions for the functional in-
ner products∫

θj(t)θ
′
`(t)ωj`(t) dt, j, ` = 1, . . . , q .
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3. Evolution in seasonal trend for the
nondurable goods index
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Four seasonal trends
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• Seasonal trends are stable over a couple of years, but
evolve over a longer time span.

• We can model nonseasonal trend plus an evolving sea-
sonal trend as follows:

y(t) = α(t)+β1(t) sin(2πt/365)+β2(t) cos(2πt/365)+. . .

+βp−1(t) sin(pπt/365) + βp(t) cos(pπt/365) + ε(t)

• For the monthly index values from 1952 to 2000 we
used p = 10.

• Intercept function α was modelled by B-splines with
knots at each year and regularized with λ = 0.01.

• Each regression function βj had 7 B-spline basis func-
tions.

• A total of 121 parameters were estimated from 577 data
points.
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The fit to the data over seven years
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4. Summary

• The concurrent functional linear model offers a simple
way of relating a functional response to functional co-
variates.

• However, the influence is simultaneous, and does not
permit a covariate to affect the outcome at any time
other than the present.

• The model can also be fit to a single long time series
provided that the number of parameters is kept small
and/or regularization is used.
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