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1. Motivation and Overview

• The theory of probability is the main mathematical foun-
dation of statistics.

• But students and other people find probability hard to
understand.

• They cannot reliably manipulate probabilities, espe-
cially when they become extreme.

• Under independence, most properties of nature that we
experience add, but probabilities multiply.

• Most measures of size are unbounded, but probability
is bounded above by 1.

• Would statistics be easier to understand if we change
probability into something more “natural”?
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• Surprisal is a measure of how surprising, attention-
getting, or informative an event is.

• We use the symbol !(A) for the surprisal of event A.

• Surprisal is proportional to minus the logarithm of prob-
ability

!(A) = −C log P (A)

where C > 0 is an arbitrary constant.

• We see how statistical theory might look if probability
were replaced by surprisal.
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2. The basic properties of surprisal

Some notation for events

• A, B, ... indicate events.

• ∼ A indicates that event A does not occur.

• AB indicates that both A and B occur, but in no partic-
ular order.

• A ∨B indicates that either A or B or both occur.

• A|B indicates that A occurs when B has already oc-
curred.

• A ⊂ B indicates that if A occurs, then B also occurs,
or that A is contained within B.
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The properties of probability P (A)

• 0 ≤ P (A) ≤ 1, probability is bounded below by 0 and
above by 1

• P (A,∼ A) = 0: impossible events occur with probabil-
ity 0

• P (A∨ ∼ A) = 1: certain events occur with probability
1

• P (AB) = P (A|B)P (B) = P (B|A)P (A): the proba-
bility of the joint occurrence of A and B can be decom-
posed in two ways into products of probabilities of single
occurrences

Events A and B be are defined to be independent if
P (A)B) = P (A): knowing that B has occurred tells us
nothing about whether B will occur. When independent
prevails, we derive that P (AB) = P (A)P (B).
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The properties of surprisal !(A)

From !(A) = −C log P (A), C > 0 we derive that

• !(A) ≥ 0: surprisal is not negative.

• !(A,∼ A) is, technically, illegal, but in fact can be taken
to be infinity.

• !(A∨ ∼ A) = 0: events that are certain to occur have
zero surprisal.

• !(AB) =!(A|B)+!(B) =!(B|A)+!(A).

If A and B are independent, then !(AB) =!(A)+!(B).
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Surprisal is a magnitude

• Like mass, distance, heat, energy and so on, surprisal
is a measure of size that add or subtract for quantities
on the same scale.

• The human brain adds and subtracts much more accu-
rately and efficiently than it multiplies and divides.

• Because the unit of measurement of surprisal is arbi-
trary, as it is for other magnitudes, only ratios of sur-
prisal remain unchanged when we change the unit.

• Zero has a definite meaning for surprisal, as well as for
other magnitudes. We can’t change its origin.

• Like other magnitudes, surprisal can be arbitrarily large.

• Surprisal will combine with other magnitudes through
either multiplication or division.

• Surprisal is a ratio scale type quantity.
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A standard unit for surprisal

• All magnitudes are linked to nature by defining a stan-
dard quantity that can be experimentally produced to a
relatively arbitrary amount of precision, and that is given
magnitude 1.

• Let A be an event that occurs with probability 1/2. Coin
tosses come close, but physics can come up with better
things.

• Let !(A) = 1. The unit of this standard surprisal is minus
the logarithm to the base 2 of P (A),

!(A) = − log2 P (A).



Motivation and Overview

Home Page

Title Page

JJ II

J I

Page 9 of 20

Go Back

Full Screen

Close

Quit

• Five straight heads will get the attention of most of us,
and has standard surprisal 5.

• Conversion of the base 10 logarithm to the base 2 log-
arithm is easy: Divide by 0.3.

log10 x = (log2 x)/0.3

• Conversion of the natural logarithm to the base 2 log-
arithm is nearly as easy: Divide by 0.693, or roughly
0.7.

• The standard surprisal of the famous P = 0.05 is 4.3, a
bit over the surprisal for four heads. P = 0.01 translates
into ! = 20/3 = 6.67.
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Standard surprisal and information

• The event of r heads, or any other event equivalent to a
pre-defined sequence of 0’1 and 1’s, requires r bits of
information to define.

• Standard surprisal is therefore a measure of informa-
tion, and is used in the mathematical theory of infor-
mation, which is central to digital signal processing and
computer design.
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Surprisal functions, distribution
functions, and hazard functions

• Let x be a real number, and let A(x) be the event that
an observed value X ≤ x.

• The probability distribution function F (x) defines the
probability of this event A(x) as a function of x.

• !(x) is a decreasing function tending to zero, sometimes
called the survivor function.

• !(∼ (A(x)) is an increasing function with a lower limit of
0.

• Moreover, d!(∼ (A(x))/dx is the hazard function.
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Standard surprisal as a function of probability of a standard
normal variable exceeding a value. The probability of ex-
ceeding 2 is about 5 1/2 heads in a row.
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3. Estimating surprisal from discrete
data

Binary data

• If we observe an event A occurring r times in n tries,
estimate !(A) by log2 n− log2 r.

• This may seem awkward, but recall that counts are very
often modelled in statistical work by constructing a lin-
ear model for the logarithm of their expected value, and,
in this case, the model is a difference.
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Multinomial data

• Suppose that K events are possible, and that the num-
bers of times nk that event k is observed have a multino-
mial distribution with probabilities pk(θ) determined by a
parameter vector θ. Then the negative log likelihood of
for these frequencies and parameter θ is

− ln L = C
K∑
k

!(k|θ)nk

and the maximum likelihood estimate of θ maximizes
the cosine of the positive angle between the data and
the model expressed in surprisal terms.
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4. Surprisal for continuous data

• The probability density function f (x) for a continuous
random variable x is not a probability, but, at least for-
mally, f (x)dx is.

• The surprisal analogue is a function s(x) called the sur-
prisal density function indicating the density of surprisal
for values of x.

• Surprisal density is related to probability density by

s(x) = −C log f (x) + D

where D is an arbitrary constant and where the loga-
rithms to the base 2 would also be “natural”.

• That is, surprisal density is on an interval scale.

• Those nasty normalizing constants in f (x) disappear
from the scene.
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Gaussian surprisal

• If Gauss had thought in terms of surprisal, which would
have been most uncharacteristic for him, he would have
proposed

s(x|µ) = [
(x− µ)

σ
]
2
+ 2 log σ

as the surprisal density.

• Maximum likelihood estimation of a parameter vector
θ defining expectation µi(θ) with Gaussian error would
have involved minimizing

SSE =

N∑
i

[xi − µi(θ)]2
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Scaling issues for surprisal density

• Surprisal density s(x) should be invariant with respect
to changes in the unit for x. This may require revising
the standard expression for the probability density func-
tion.

• Gaussian surprisal density is scale invariant with re-
spect to x since re-scaling σ shifts by a constant.

• Surprisal density for the gamma distribution

f (x) =
1

Γ(α)
xα−1e−x/τ

leads to, using the natural logarithm,

s(x) = (α− 1)[log x− log Γ(α)]− x

τ

• On the other hand, the unit for the vertical axis, surprisal
itself except for a possible shift, is arbitrary.
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5. Parameter estimation

Maximum likelihood and Bayesian
estimation

• This is even simpler: we minimize

S(θ|x) =

N∑
i

s(xi|θ),

or the total surprisal density of the data. Again, note
that normalizing constants are irrelevant.

• Let r(θ) be a prior surprisal function indicating how sur-
prised we would be by various values of θ.

• Posterior surprisal is clearly

t(θ|x) = S(θ|x) + r(θ)
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Expectation in surprisal terms

• The expectation of g(x) is defined as

E[g(x)] =

∫
g(x)f (x)dx

• But instead, we can make an equivalent definition:
E[g(x)] = µg minimizes∫

[g(x)− µg]
2es(x)dx

• The solution is

E[g(x)] =

∫
g(x)es(x)dx∫

es(x)dx

• Exponentiation of surprisal density is permitted be-
cause s(x) is scale invariant along the x-axis.



Motivation and Overview

Home Page

Title Page

JJ II

J I

Page 20 of 20

Go Back

Full Screen

Close

Quit

• This makes obvious the equivalency between expecta-
tion, which an idempotent operator, and projection in
the metric of es(x).

• That is, expectation is a Hilbert Space concept, and
tied, whether we like it or not, to Gaussian surprisal.
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