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Preface

This contribution to the useR! series by Springer is designed to show newcomers
how to do functional data analysis in the two popular languages, Matlab and R. We
hope that this book will substantially reduce the time and effort required use these
techniques to gain valuable insights in a wide variety of applications.

We also hope that the practical examples in this book will make this learning
process fun, interesting and memorable. We have tried to choose rich, real-world
problems where the optimal analysis has yet to be performed. We have found that
applying a spectrum of methods provides more insight than any single approach by
itself. Experimenting with graphics and other displays of results is essential.

To support the acquisition of expertise, the ”scripts” subdirectory of the compan-
ion fda package for R includes files with names like ”fdarm-ch01.R” and ”fdarm-
ch01.m”, which contain commands in both R and Matlab to reproduce many of
the example, tables, and figures in the book. The contents of a book are fixed by
schedules for editing and printing. These script files are not similarly constrained.
Thus, in some cases, the script files may perform a particular analysis differently
from how it is described in the book. Such differences will reflect improvements
in our understanding of preferred ways of performing the analysis described in the
book. The web site www.functionaldata.org is a resource for ongoing developments
of software, new tools and current events.

The support for two languages is perhaps a bit unusual in this series, but there are
good reasons for this. Matlab is expensive for most users, but it’s capacity modeling
for dynamical systems and other engineering applications has been critical in the
development of today’s fda package, especially in areas such chemical engineering
where functional data are the rule rather than the exception and where Matlab is
widely used. On the other hand, the extendibility of R, the easy interface with lower
level languages, and above all its cost explain its popularity in many fields served
by statisticians, students and new researchers. We hope that we can help many of
our readers to appreciate the strengths of each language, so as to invest wisely later
on. Secondarily, we hope that any user of either language wanting to learn the other
can benefit from seeing the same analyses done in both languages.
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As with most books in this useR! series, this is not the place to gain enough
technical knowledge to claim expertise in functional data analysis, nor to develop
new tools. But we do hope that some readers will find enough of value here to
want to turn to monographs on functional data analysis already published, such as
Ramsay and Silverman (2005), and to those already in the works.

We wish to end this preface by thanking our families, friends, students, employ-
ers, clients and others who have helped make us what we are today and thereby
contributed to this book and to our earlier efforts. In particular, we wish to thank
John Kimmel of Springer for organizing this series and inviting us to create this
book.

James Ramsay McGill University
Giles Hooker Cornell University
Spencer Graves San Jose, CA
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Chapter 1
Introduction to Functional Data Analysis

The main characteristics of functional data and of functional models are introduced.
Data on the growth of girls illustrates samples of functional observations, and data
on the US nondurable goods manufacturing index is an example of a single long
multi-layered functional observation. Data on the gait of children and handwriting
are multivariate functional observations. Functional data analysis also involves esti-
mating functional parameters describing data that are not themselves functional, and
estimating a probability density function for rainfall data is an example. A theme in
functional data analysis is the use of information in derivatives, and examples are
drawn from growth and weather data. The chapter also introduces the important
problem of registration, the aligning of functional features.

The use of code is not taken up in this chapter, but R and Matlab code to repro-
duce some of the examples, tables and figures appears in files ”fdarm-ch01.R” (for
R) and ”fdarm-ch01.m” (for Matlab) in the ”scripts” subdirectory of the companion
”fda” package for R, but without extensive explanation of why we used a specific
command sequence.

1.1 What are Functional Data?

1.1.1 Data on the Growth of Girls

Figure 1.1 provides a prototype for the type of data that we shall consider. It shows
the heights of 10 girls measured at a set of 31 ages in the Berkeley Growth Study
(Tuddenham and Snyder, 1954). The ages are not equally spaced; there are four
measurements while the child is one year old, annual measurements from two to
eight years, followed by heights measured biannually. Although great care was taken
in the measurement process, there is an average uncertainty in height values of at
least three millimeters. Even though each record is a finite set of numbers, their
values reflect a smooth variation in height that could be assessed, in principle, as
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2 1 Introduction to Functional Data Analysis

often as desired, and is therefore a height function. Thus, the data consist of a sample
of 10 functional observations Heighti(t).
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Fig. 1.1 The heights of 10 girls measured at 31 ages. The circles indicate the unequally spaced
ages of measurement.

There are features in this data too subtle to see in this type of plot. Figure 1.2
displays the acceleration curves D2Heighti estimated from these data by Ramsay
et al. (1995) using a technique discussed in Chapter 5. We use the notation D for
differentiation, as in

D2Height=
d2Height

dt2 .

The pubertal growth spurt shows up as a pulse of strong positive acceleration
followed by sharp negative deceleration. But most records also show a bump at
around six years that is termed the mid-spurt. We therefore conclude that some of
the variation from curve to curve can be explained at the level of certain derivatives.
The fact that derivatives are of interest is further reason to think of the records as
functions, rather than vectors of observations in discrete time.

The ages are not equally spaced, and this affects many of the analyses that might
come to mind if they were. For example, although it might be mildly interesting to
correlate heights at ages 9, 10 and 10.5, this would not take account of the fact that
we expect the correlation for two ages separated by only half a year to be higher
than that for a separation of one year. Indeed, although in this particular example
the ages at which the observations are taken are nominally the same for each girl,
there is no real need for this to be so. In general, the points at which the functions
are observed may well vary from one record to another.
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Fig. 1.2 The estimated accelerations of height for 10 girls, measured in centimeters per year per
year. The heavy dashed line is the cross-sectional mean and is a rather poor summary of the curves.

The replication of these height curves invites an exploration of the ways in which
the curves vary. This is potentially complex. For example, the rapid growth during
puberty is visible in all curves, but both the timing and the intensity of pubertal
growth differ from girl to girl. Some type of principal components analysis would
undoubtedly be helpful, but we must adapt the procedure to take account of the
unequal age spacing and the smoothness of the underlying height functions.

It can be important to separate variation in timing of significant growth events,
such as the pubertal growth spurt, from variation in the intensity of growth. We will
look at this in detail in Chapter 8 where we consider curve registration.

1.1.2 Data on US Manufacturing

Not all functional data involve independent replications; we often have to work
with a single long record. Figure 1.3 shows an important economic indicator, the
nondurable goods manufacturing index for the United States. Data like these often
show variation as multiple levels.

There is a tendency for the index to show geometric or exponential increase over
the whole century, and plotting the logarithm of the data in Figure 1.4 makes this
trend appear linear while giving us a better picture of other types of variation. At
a finer scale, we see departures from this trend due to the depression, World War
II, the end of the Vietnam War and other more localized events. Moreover, at an
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Fig. 1.3 The monthly nondurable goods manufacturing index for the United States.

even finer scale, there is a marked annual variation, and we can wonder whether
this seasonal trend itself shows some longer term changes. Although there are no
independent replications here, there is still a lot of repetition of information that we
can exploit to obtain stable estimates of interesting curve features.

1.1.3 Input/output Data for an Oil Refinery

Functional data also arise as input/output pairs, such as in the data in Figure 1.5
collected at an oil refinery in Texas. The amount of a petroleum product at a certain
level in a distillation column or cracking tower, shown in the top panel, reacts to
the change in the flow of a vapor into the tray, shown in the bottom panel, at that
level. How can we characterize this dependency? More generally, what tools can we
devise that will show how a system responds to changes in critical input functions
as well as other covariates?
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Fig. 1.4 The logarithm of the monthly nondurable goods manufacturing index for the United
States. The dashed line indicates the linear trend over the whole time period.

1.2 Multivariate Functional Data

1.2.1 Data on How Children Walk

Functional data are often multivariate. Our third example is in Figure 1.6. The Mo-
tion Analysis Laboratory at Children’s Hospital, San Diego, CA, collected these
data, which consist of the angles formed by the hip and knee of each of 39 children
over each child’s gait cycle. See (Olshen et al., 1989) for full details. Time is mea-
sured in terms of the individual gait cycle, which we have translated into values of
t in [0,1]. The cycle begins and ends at the point where the heel of the limb under
observation strikes the ground. Both sets of functions are periodic and are plotted as
dotted curves somewhat beyond the interval for clarity. We see that the knee shows
a two-phase process, while the hip motion is single-phase. It is harder to see how
the two joints interact: The figure does not indicate which hip curve is paired with
which knee curve. This example demonstrates the need for graphical ingenuity in
functional data analysis.

Figure 1.7 shows the gait cycle for a single child by plotting knee angle against
hip angle as time progresses round the cycle. The periodic nature of the process
implies that this forms a closed curve. Also shown for reference purposes is the
same relationship for the average across the 39 children. An interesting feature in
this plot is the cusp occurring at the heel strike as the knee momentarily reverses
its extension to absorb the shock. The angular velocity is clearly visible in terms
of the spacing between numbers, and it varies considerably as the cycle proceeds.
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Fig. 1.5 The top panel shows 193 measurements of the amount of petroleum product at tray level
47 in a distillation column in an oil refinery. The bottom panel shows the flow of a vapor into that
tray during an experiment.
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Fig. 1.6 The angles in the sagittal plane formed by the hip and knee as 39 children go through a
gait cycle. The interval [0,1] is a single cycle, and the dotted curves show the periodic extension of
the data beyond either end of the cycle.
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The child whose gait is represented by the solid curve differs from the average in
two principal ways. First, the portion of the gait pattern in the C–D part of the cycle
shows an exaggeration of movement relative to the average. Second, in the part
of the cycle where the hip is most bent, this bend is markedly less than average;
interestingly, this is not accompanied by any strong effect on the knee angle. The
overall shape of the cycle for this particular child is rather different from the average.
The exploration of variability in these functional data must focus on features such
as these.
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Fig. 1.7 Solid line: The angles in the sagittal plane formed by the hip and knee for a single child
plotted against each other. Dotted line: The corresponding plot for the average across children. The
points indicate 20 equally spaced time points in the gait cycle. The letters are plotted at intervals
of one-fifth of the cycle with A marking the heel strike.

1.2.2 Data on Handwriting

Multivariate functional data often arise from tracking the movements of points
through space, as illustrated in Figure 1.8, where the X-Y coordinates of 20 samples
of handwriting are superimposed. The role of time is lost in plots such as these, but
can be recovered to some extent by plotting points at regular time intervals.

Figure 1.9 shows the mean of 50 samples of the writing of “statistical science”
in simplified Chinese with gaps corresponding to the pen being lifted off the paper.
Also plotted are points at 121 millisecond intervals; many of these points seem to
coincide with points of sharp curvature and the ends of strokes.
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Fig. 1.9 The mean of 50 samples of writing “statistical science” in simplified Chinese. The plotted
points correspond to 121 millisecond time steps.
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Finally, in this introduction to types of functional data, we must not forget that
they may come to our attention as full-blown functions, so that each record may
consist of functions observed, for all practical purposes, everywhere. Sophisticated
on-line sensing and monitoring equipment now routinely used in research in fields
such as medicine, seismology, meteorology and physiology can record truly func-
tional data.

1.3 Functional Models for Non-functional Data

The data examples above seem to deserve the label “functional” since they so clearly
reflect the smooth curves that we assume generated them. Beyond this, functional
data analysis tools can be used for many data sets that are not so obviously func-
tional.

Consider the problem of estimating a probability density function p to describe
the distribution of a sample of observations x1, . . . ,xn. The classic approach to this
problem is to propose, after considering basic principles and closely studying the
data, a parametric model with values p(x|θ) defined by a fixed and usually small
number of parameters in the vector θ . For example, we might consider the normal
distribution as appropriate for the data, so that θ = (µ ,σ2)′. The parameters them-
selves are usually chosen to be descriptors of the shape of the density, as in location
and spread for the normal density, and are therefore the focus of the analysis.

But suppose that we do not want to assume in advance one of the many textbook
density functions. We may feel, for example, that the application can not justify the
assumptions required for using any of the standard distributions. Or we may see
features in histograms and other graphical displays that seem not to be captured by
any of the most popular distributions. Nonparametric density estimation methods
assume only smoothness, and permit as much flexibility in the estimated p(x) as the
data require or the data analyst desires. To be sure, parameters are often involved, as
in the density estimation method of Chapter 5, but the number of parameters is not
fixed in advance of the data analysis, and our attention is focussed on the density
function p itself not on parameter estimates. Much of the technology for estimation
of smooth functional parameters was originally developed and honed in the density
estimation context, and Silverman (1986) can be consulted for further details.

Psychometrics or mental test theory also relies heavily on functional models for
seemingly nonfunctional data. The data are usually zeros and ones indicating un-
successful and correct answers to test items, but the model consists of a set of item
response functions, one per test item, displaying the smooth relationship between
the probability of success on an item and a presumed latent ability continuum. Fig-
ure 1.10 shows three such functional parameters for a test of mathematics estimated
by the functional data analytic methods reported in Rossi et al. (2002).
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Fig. 1.10 Each panel shows an item response function relating an examinee’s position θ on a latent
ability continuum to the probability of a correct response to an item in a mathematics test.

1.4 Some Functional Data Analyses

Data in many fields come to us through a process naturally described as func-
tional. Consider Figure 1.11, where the mean monthly temperatures for four Cana-
dian weather stations are plotted, along with estimates of the corresponding smooth
temperature functions presumed to generate the observations. Montreal, with the
warmest summer temperature, has a temperature pattern that appears to be nicely
sinusoidal. Edmonton, with the next warmest summer temperature, seems to have
some distinctive departures from sinusoidal variation that might call for explanation.
The marine climate of Prince Rupert is evident in the small amount of annual varia-
tion in temperature. Resolute has bitterly cold but strongly sinusoidal temperatures.

One expects temperature to be periodic and primarily sinusoidal in character and
over the annual cycle. There is some variation in the timing of the seasons or phase,
because the coldest day of the year seems to be later in Montreal and Resolute than
in Edmonton and Prince Rupert. Consequently, a model of the form

Tempi(t)≈ ci1 + ci2 sin(πt/6)+ ci3 cos(πt/6) (1.1)

should do rather nicely for these data, where Tempi is the temperature function for
the ith weather station, and (ci1,ci2,ci3) is a vector of three parameters associated
with that station.

In fact, there are clear departures from sinusoidal or simple harmonic behavior.
One way to see this is to compute the function

LTemp= (π/6)2DTemp+D3Temp. (1.2)
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Fig. 1.11 Mean monthly temperatures at four Canadian weather stations.

The notation DmTemp means “take the mth derivative of function Temp,” and the
notation LTemp stands for the function which results from applying the linear dif-
ferential operator L = (π/6)2D+D3 to the function Temp. The resulting function,
LTemp, is often called a forcing function. If a temperature function is truly sinu-
soidal, then LTemp should be exactly zero, as it would be for any function of the
form (1.1). That is, it would conform to the differential equation

LTemp= 0 or D3Temp=−(π/6)2DTemp.

But Figure 1.12 indicates that the functions LTempi display systematic features
that are especially strong in the spring and autumn months. Put another way, tem-
perature at a particular weather station can be described as the solution of the non-
homogeneous differential equation corresponding to LTemp= u, where the forcing
function u can be viewed as input from outside of the system, or as an exogenous
influence. Meteorologists suggest, for example, that these spring and autumn effects
are partly due to the change in the reflectance of land when snow or ice melts, and
this would be consistent with the fact that the least sinusoidal records are associated
with continental stations well separated from large bodies of water.

Here, the point is that we may often find it interesting to remove effects of a sim-
ple character by applying a differential operator, rather than by simply subtracting
them. This exploits the intrinsic smoothness in the process. Long experience in the
natural and engineering sciences suggests that this may get closer to the underlying
driving forces at work than just adding and subtracting effects, as is routinely done
in multivariate data analysis. We will consider this idea in depth in Chapter 11.
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Fig. 1.12 The result of applying the differential operator L = (π/6)2D+D3 to the estimated tem-
perature functions in Figure 1.11. If the variation in temperature were purely sinusoidal, these
curves would be exactly zero.

1.5 First Steps in a Functional Data Analysis

1.5.1 Data Representation: Smoothing and Interpolation

Assuming that a functional datum for replication i arrives as a finite set of mea-
sured values, yi1, . . . ,yin, the first task is to convert these values to a function xi with
values xi(t) computable for any desired argument value t. If these observations are
assumed to be errorless, then the process is interpolation, but if they have some
observational error that needs removing, then the conversion from (finite) data to
functions (which can theoretically be evaluated at an infinite number of points) may
involve smoothing.

Chapter 5 offers a survey of these procedures. The roughness penalty smoothing
method discussed there will be used much more broadly in many contexts through-
out the book, and not merely for the purpose of estimating a function from a set of
observed values. The daily precipitation data for Prince Rupert, one of the wettest
places on the continent, is shown in Figure 1.13. The curve in the figure, which
seems to capture the smooth variation in precipitation, was estimated by penaliz-
ing the squared deviations in harmonic acceleration as measured by the differential
operator (1.2).

The gait data in Figure 1.6 were converted to functions by the simplest of in-
terpolation schemes: joining each pair of adjacent observations by a straight line
segment. This approach would be inadequate if we required derivative information.
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Fig. 1.13 The points indicate average daily rainfall at Prince Rupert on the northern coast of British
Columbia. The curve was fit to these data using a roughness penalty method.

However, one might perform a certain amount of smoothing while still respecting
the periodicity of the data by fitting a Fourier series to each record: A constant plus
three pairs of sine and cosine terms does a reasonable job for these data. The growth
data in Figure 1.1 and the temperature data in Figure 1.11 were fit using smoothing
splines; this more sophisticated technique can also provide high quality derivative
information.

There are often conceptual constraints on the functions that we estimate. For
example, a smooth of precipitation such as that in Figure 1.13 should logically never
be negative. There is no danger of this happening for a station as moist as Prince
Rupert, but a smooth of the data in Resolute, the driest place that we have data for,
can easily violate this constraint. The growth curve fits should be strictly increasing,
and we shall see that imposing this constraint results in a rather better estimate of the
acceleration curves that we saw in Figure 1.2. Chapter 5 shows how to fit a variety
of constrained functions to data.

1.5.2 Data Registration or Feature Alignment

Figure 1.14 shows some biomechanical data. The curves in the figure are twenty
records of the force exerted on a meter during a brief pinch by the thumb and fore-
finger. The subject was required to maintain a certain background force on a force
meter and then to squeeze the meter aiming at a specified maximum value, return-
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Fig. 1.14 Twenty recordings of the force exerted by the thumb and forefinger where a constant
background force of two newtons was maintained prior to a brief impulse targeted to reach 10
newtons. Force was sampled 500 times per second.

ing afterwards to the background level. The purpose of the experiment was to study
the neurophysiology of the thumb–forefinger muscle group. The data were collected
at the MRC Applied Psychology Unit, Cambridge, by R. Flanagan (Ramsay et al.,
1995).

These data illustrate a common problem in functional data analysis. The start of
the pinch is located arbitrarily in time, and a first step is to align the records by
some shift of the time axis. In Chapter 8 we take up the question of how to estimate
this shift and how to go further if necessary to estimate record-specific linear or
nonlinear transformations of the argument.

1.5.3 Graphing Functional Data

Displaying the results of a functional data analysis can be a challenge. With the gait
data in Figures 1.6 and 1.7, we have already seen that different displays of data
can bring out different features of interest, and the standard plot of x(t) against t is
not necessarily the most informative. It is impossible to be prescriptive about the
best type of plot for a given set of data or procedure, but we shall give illustrations
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of various ways of plotting the results. These are intended to stimulate the reader’s
imagination rather than to lay down rigid rules.

1.5.4 Plotting Pairs of Derivatives: Phase-Plane Plots

Let’s look at a couple of plots to explore the possibilities opened up by access to
derivatives of functions. Figure 1.15 contains phase-plane plots of the female height
curves in Figure 1.1, consisting of plots of the accelerations or second derivatives
against their velocities or first derivatives. Each curve begins in the lower right in
infancy, with strong positive velocity and negative acceleration. The middle of the
pubertal growth spurt for each girl corresponds to the point where her velocity is
maximized after early childhood. The circles mark the position of each girl at age
11.7, the average mid-pubertal age. The pubertal growth loop for each girl is entered
from the right and below, usually after a cusp or small loop. The acceleration is
positive for a while as the velocity increases until the acceleration drops again to
zero on the right at the middle of the spurt. The large negative swing terminates near
the origin where both velocity and acceleration vanish at the beginning of adulthood.
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Fig. 1.15 The second derivative or acceleration curves are plotted against the first derivative or
velocity curves for the ten female growth curves in Figure 1.1. Each curve begins in time off the
lower right with the strong velocity and deceleration of infant growth. The velocities and acceler-
ations at age 11.7 years, the average age of the middle of the growth spurt, are marked on each
curve by circles. The curve is highlighted by a heavy dashed line is that of a girl who goes through
puberty at the average age.
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Many interesting features in this plot demand further consideration. Variability
is greatest in the lower right in early childhood, but it is curious that two of the
10 girls have quite distinctive curves in that region. Why does the pubertal growth
spurt show up as a loop? What information does the size of the loop convey? Why
are the larger loops tending to be on the right and the smaller on the left? We see
from the shapes of the loop and from the position of the 11.7 year marker that girls
with early pubertal spurts (marker point well to the left) tend to have very large
loops, and late-spurt girls have small ones. Does inter-child variability correspond
to something like growth energy? Clearly there must be a lot of information in how
velocity and acceleration are linked together in human growth, and perhaps in many
other processes as well.

1.6 Exploring Variability in Functional Data

The examples considered so far offer a glimpse of ways in which the variability of
a set of functional data can be interesting, but there is a need for more detailed and
sophisticated ways of investigating variability. These are a major theme of this book.

1.6.1 Functional Descriptive Statistics

Any data analysis begins with the basics: Estimating means and standard deviations.
Functional versions of these elementary statistics are given in Chapter 7. But what is
elementary for univariate and multivariate data turns out to be not always so simple
for functional data. Chapter 8 returns to the functional data summary problem, and
shows that curve registration or feature alignment may have to be applied in order to
separate amplitude variation from phase variation before these statistics are used.

1.6.2 Functional Principal Components Analysis

Most sets of data display a small number of dominant or substantial modes of vari-
ation, even after subtracting the mean function from each observation. An approach
to identifying and exploring these, set out in Chapter 7, is to adapt the classical mul-
tivariate procedure of principal components analysis to functional data. Techniques
of smoothing are incorporated into the functional principal components analysis
itself, thereby demonstrating that smoothing methods have a far wider rôle in func-
tional data analysis than merely in the initial step of converting a finite number of
observations to functional form.
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1.6.3 Functional Canonical Correlation

How do two or more sets of records covary or depend on one another? While study-
ing Figure 1.7, we might consider how correlations embedded in the record-to-
record variations in hip and knee angles might be profitably examined and used
to further our understanding the biomechanics of walking.

The functional linear modelling framework approaches this question by consid-
ering one of the sets of functional observations as a covariate and the other as a
response variable. In many cases, however, it does not seem reasonable to impose
this kind of asymmetry. We shall develop two rather different methods that treat
both sets of variables in an even-handed way. One method essentially treats the
pair (Hipi,Kneei) as a single vector-valued function, and then extends the func-
tional principal components approach to perform an analysis. Chapter 7 takes an-
other approach, a functional version of canonical correlation analysis, identifying
components of variability in each of the two sets of observations which are highly
correlated with one another.

For many of the methods we discuss, a naı̈ve approach extending the classical
multivariate method will usually give reasonable results, though regularization will
often improve these. However, when a linear predictor is based on a functional ob-
servation, and also in functional canonical correlation analysis, imposing smooth-
ness on functional regression coefficients is not an optional extra, but rather an in-
trinsic and necessary part of the analysis; the reasons are discussed in Chapters 7
and 8.

1.7 Functional Linear Models

The classical techniques of linear regression, analysis of variance, and linear mod-
elling all investigate the way in which variability in observed data can be accounted
for by other known or observed variables. They can all be placed within the frame-
work of the linear model

y = Zβ + ε (1.3)

where, in the simplest case, y is typically a vector of observations, β is a parameter
vector, Z is a matrix that defines a linear transformation from parameter space to
observation space, and ε is an error vector with mean zero. The design matrix Z
incorporates observed covariates or independent variables.

To extend these ideas to the functional context, we retain the basic structure (1.3)
but allow more general interpretations of the symbols within it. For example, we
might ask of the Canadian weather data:

• If each weather station is broadly categorized as being Atlantic, Pacific, Conti-
nental or Arctic, in what way does the geographical category characterize the de-
tailed temperature profile Temp and account for the different profiles observed?
In Chapter 10 we introduce a functional analysis of variance methodology, where
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both the parameters and the observations become functions, but the matrix Z re-
mains the same as in the classical multivariate case.

• Could a temperature record Temp be used to predict the logarithm of total an-
nual precipitation? In Chapter 9 we extend the idea of linear regression to the
case where the independent variable, or covariate, is a function, but the response
variable (log total annual precipitation in this case) is not.

• Can the temperature record Temp be used as a predictor of the entire precipitation
profile, not merely the total precipitation? This requires a fully functional linear
model, where all the terms in the model have more general form than in the
classical case. This topic is considered in Chapter 10.

• We considered earlier the many roles that derivatives play in functional data anal-
ysis. In the functional linear model, we may use derivatives as dependent and
independent variables. Chapter 10 is a first look at this idea, and sets the stage
for the following chapters on differential equations.

1.8 Using Derivatives in Functional Data Analysis

In Section 1.4 we have already had a taste of the ways in which derivatives and linear
differential operators are useful in functional data analysis. The use of derivatives
is important both in extending the range of simple graphical exploratory methods,
and in the development of more detailed methodology. This is a theme that will
be explored in much more detail in Chapter 11, but some preliminary discussion is
appropriate here.

Chapter 11 takes up the question, unique to functional data analysis, of how
to use derivative information in studying components of variation. An approach
called principal differential analysis identifies important variance components by
estimating a linear differential operator that will annihilate them (if the model is
adequate). Linear differential operators, whether estimated from data or constructed
from external modelling considerations, also play an important part in developing
regularization methods more general than those in common use.

1.9 Concluding Remarks

In the course of the book, we shall describe a considerable number of techniques
and algorithms to explain how the methodology we develop can actually be used in
practice. We shall also illustrate this methodology on a variety of data sets drawn
from various fields, including where appropriate the examples introduced in this
chapter. However, it is not our intention to provide a cook-book for functional data
analysis.

In broad terms, our goals are simultaneously more ambitious and more modest:
more ambitious by encouraging readers to think about and understand functional
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data in a new way but more modest in that the methods described in this book are
hardly the last word in how to approach any particular problems. We believe that
readers will gain more by experimenting with various modifications of the principles
described herein than by following any suggestion to the letter. To make this easier,
script files like ”fdarm-ch01.R” (for R) and ”fdarm-ch01.m” (for Matlab) in the
”scripts” subdirectory of the companion ”fda” package for R can be copied and
revised to test understanding of the concepts. The ”debug” function in R allows
a user to walk through standard R code line by line with real examples until any
desired level of understanding is achieved.

For those who would like access to the software that we have used, a selection is
available on the website:

http://www.functionaldata.org

and in the fda package in R. This website will also be used to publicize related and
future work by the authors and others, and to make available the data sets referred
to in the book that we are permitted to release publicly.

1.10 Some Things to Try

In this and subsequent chapters, we suggest some simple exercises that you might
consider trying.

1. Find some samples of functional data and plot them. Make a short list of ques-
tions that you have about the processes generating the data. If you don’t have
some data laying around in a file somewhere, here are some suggestions:

a. Use your credit card or debit/bank card transactions in your last statement. If
you keep your statements, or maintain an electronic record, consider entering
also the statements for five or so previous months, or even for the same month
last year.

b. Bend over and try to touch your toes. Please don’t strain! Have someone mea-
sure how far your fingers are from the floor (or your wrist if you are that
flexible). Now inhale and exhale slowly. Re-measure, and repeat for a series
of breath cycles. Now repeat exercise, but for the person doing the measuring.

c. Visit some woods and count the number of birds that you see, or the number
of varieties. Do this for a series of visits, spread over a day or a week. If over
a week, record the temperature and cloud and precipitation status as well.

d. Visit a weather web site, and record the five-day temperature forecasts for a
number of cities.

e. If you have a chronic concern like allergies, brainstorm a list of terms to de-
scribe the severity of the condition, sort the terms from mild to severe and
assign numbers to them. Also brainstorm a list of possible contributing fac-
tors and develop a scale for translating variations in each contributing factor
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into numbers. Each day, record the level of the condition and each potential
contributing factor. One of us solved a serious allergy problem doing this.



Chapter 2
Essential Comparisons of the Matlab and R
Languages

We assume a working knowledge of either Matlab or R. For either language, there
are many book that describe the basics for beginners. However, a brief comparison
of the two languages might help someone familiar with one language read code
written in the other.

Matlab and R have many features in common. Some of the differences are trivial
while others can be troublesome. Where differences are minor, we offer code in only
one language, which will be often R.

We will use typewriter font for any text meant to be interpreted as Matlab or R
code, such as plot(heightfd).

2.1 A Quick Comparison of Matlab and R Syntax

There are similarities and differences in the syntax for Matlab and R.

2.1.1 Minor Differences

Here’s a quick list of the more commonly occurring differences so that you easily
translate a command in one language in that in the other:

• Your code will be easier to read if function names describe what the function
does. This often produces a preference for names with words strung together.
This is often done in Matlab by connecting words or character strings with under-
scores like create fourier basis. This is also acceptable in R. However,
it is not used that often, because previous versions of R (and S-Plus) accepted an
underscore as a replacement operator. Names in R are more likely to be use dots
or periods to separate strings, as in create.fourier.basis used below.

21
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• The dot or period in Matlab identifies a component of a struct array . This
is roughly comparable to the use of the dollar sign ($) in R to identify components
of a list, though there are differences, which we will not discuss here.

• Vectors are often defined using the c() command in R, as in rng = c(0,1).
In Matlab, this is accomplished using square brackets, as in rng = [0,1].

• On the other hand, R uses square brackets to select subsets of values from a
vector, such as rng[2]. Matlab does this with parentheses, as in rng(2).

• R has logical variables with values either TRUE or FALSE. Recent releases of
Matlab also have logical variables taking values true or false.

• Previous releases of R, S, and S-Plus allowed the use of T and F for TRUE and
FALSE. Recent releases of R have allowed users to assign other values to T or F
for compatibility with other languages. This has the unfortunate side effect that
R code written using T or F could throw an error or give a wrong answer without
warning if, for example, a user defined F = TRUE or F = c(’Do’, ’not’,
’use’, ’F’, ’as’, ’a’, ’logical.’).

• In both languages, numbers can sometimes be used as logicals; in such cases, 0
is treated as FALSE and any nonzero is TRUE.

• If a line of code is not syntactically complete, the R interpreter looks for that
code to continue on the next line; Matlab requires the line to end in ”...” if the
code is to be continued on the next line.

• Matlab normally terminates a command with a semicolon. If this is not done,
Matlab automatically displays the object produced by the command. Lines in R
can end in a semicolon, but that’s optional.

In this book, where we give commands in both languages, the R version will
come first and the Matlab version second. But we will often give only one version
where the conversion is just a matter of following these rules.

The matter of the assignment operator needs at least a brief comment. In R the
correct way to write the transfer of the value produced by the right side of a state-
ment to the object named on the left side is with the two-character sequence <-. We
like this notation, and prefer to use it in our own work. However, there was from the
beginning a resistance among users of R, S and S-PLUS to the use of two characters
instead of one. The underscore was allowed but created problems, if only because
of incompatibility with many other languages like Matlab that allowed the under-
score in names. Recent versions of R allow the use of = for replacement in most
contexts, but users are warned that there are situations where the code becomes am-
biguous and may generate errors that can be hard to trace. With this in mind, we
notwithstanding opt for = in this book, primarily to keep statements readable and to
minimize the differences between R and Matlab. (Matlab uses only = for replace-
ment.)
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2.1.2 Using Functions in the Two Languages

The ways in which arguments are passed to functions and computed results returned
is, unfortunately, different in the two languages. We can illustrate the differences by
the ways in which we use the important smoothing function, smooth.basis in R
and smooth basis in Matlab. Here is a full function call in R:

smoothlist = smooth.basis(argvals, y, fdParobj,
wtvec, fdnames)

and here is the Matlab counterpart:

[fdobj, df, gcv, coef, SSE, penmat, y2cMap] = ...
smooth_basis(argvals, y, fdParobj, wtvec, fdnames);

An R function outputs only a single object, so that if multiple objects need to be
returned, as in this example, then R returns them within a list object. But Matlab
returns its outputs as a set of variable names, contained within square brackets if
there are more than one.

The handy R feature of being able to use argument names to provide any subset
of arguments in any order does not exist in Matlab. Matlab function calls require
the arguments in a rigid order, though only a subsequence of leading arguments can
be supplied. The same is true of the outputs. Consequently, Matlab programmers
position essential arguments and returned objects first.

For example, most of the time we just need three arguments and a single output
for smooth.basis and its Matlab counterpart, so that a simpler R call might be

myfdobj = smooth.basis(argvals, y, fdParobj)$fd

and the Matlab version would be

myfdobj = smooth_basis(argvals, y, fdParobj);

Here R gets around the fact that it can only return a single object by returning a
list, and using the $fd suffix to select from that list the object required. Matlab just
returns the single object. If we want the third output gcv, we could get that in R by
replacing fd with gcv; in Matlab, we need to provide explicit names for undesired
outputs as, [fdobj, df, gcv] in this example. R also has the advantage of
being able to change the order of arguments by a call like

myfdobj = smooth.basis(y=yvec, argvals=tvec,
fdParobj)$fd

In order to keep things simple, we will try keep the function calls as similar as
possible in the examples in this book.
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2.2 Singleton Index Issues

The default behavior in matrices and arrays with a singleton dimension is exactly
the opposite between R and Matlab: R drops apparently redundant dimensions, com-
pressing a matrix to a vector or an array to a matrix or vector. Matlab does not.

For example, temp = matrix(c(1,2,3,4),2,2) sets up a 2 by 2 ma-
trix in R, and class(temp) tells us this is a "matrix". However, class(
temp[,1]) yields "numeric", which says that temp[,1] is no longer a ma-
trix. If you want a matrix from this operation, use temp[,1, drop=FALSE].
This can have unfortunate consequences in that an operation that expects temp[,
index] to be a matrix will work when length(index) > 1 but may throw an
error when length(index) = 1. If A is a 3-dimensional array, A1 = A[,1,]
will be a matrix provided the first and third dimensions of A both have multiple lev-
els. If this is in doubt, dim(A1) = dim(A)[-2] will ensure that A is a matrix,
not a vector as it would be if the first or third dimensions of A were singleton.

Matlab has the complementary problem. An array with a single index, as in temp
= myarray(:,1,:), is still an array with the same number of dimensions. If you
want to multiply this by a matrix or plot its columns, the squeeze() function will
eliminate unwanted singleton dimensions. In other words, squeeze(temp) is a
matrix, as long as only one of the three dimension of temp is a singleton.

A user who doesn’t understand these issues in R or Matlab can lose much time
programming around problems that are otherwise easily handled.

2.3 Classes and Objects in R and Matlab

Our code uses object-oriented programming, which brings great simplicity to the
use of some of the functions. For example, we can use the plot command in either
language to create specialized graphics tailored to the type of object being plotted,
e.g., for basis function systems or functional data objects, as we shall see in the next
chapter.

The notion of a class is built on the more primitive notion of a list object in R
and it’s counterpart, a struct object in Matlab. Lists and structs are used to group
together types of information with different internal characteristics. For example,
we might want to combine a vector of numbers with a fairly lengthy name or string
that can be used as a title for plots. The vector of numbers is a numeric object in R
or a double object in Matlab, while the title string is a character object in R and a
char object in Matlab.

Once we have this capacity of grouping together things with arbitrary properties,
it is an easy additional step to define a class as a specific recipe or pre-defined
combination of types of information, along with a name to identify the name of the
recipe. For example, in the next chapter we will define the all-important class fd as,
minimally, a coefficient array combined with a recipe for a set of basis functions.
That is, an fd object is either a list or a struct, depending on the language,
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which contains at least two pieces of information, each pre-specified and associated
with the class name fd. Actually, the specification for the basis functions is itself
also a object of a specific class, the basisfd class in R and the basis class in
Matlab, but let’s save these details until the next chapter.

Unfortunately, the languages differ dramatically in how they define classes, and
this has wide-ranging implications.

In Matlab, a class is set up as a folder or directory of functions used to work with
objects of that class.

R has two different ways to define classes and operations on objects of different
classes, the S3 and S4 systems. The fda package for R uses the S3 system. In
this S3 standard, R recognizes an object to be of a certain class, e.g., fd, solely by
the possession of a ’class’ attribute with value ’fd’. The class attribute is
used by generic functions such as plot by methods dispatch, which looks first for
a function with the name of the generic followed by the class name separated by a
period, e.g, plot.fd to plot an object of class fd.

An essential operation is the extraction of information from an object of a partic-
ular class. Each language has simple classes that are basic to its structure, such as the
class matrix in either language. However, the power of object oriented program
become apparent when a programmer sets up new classes that, typically, contain
multiple named entities or components. These components are themselves objects
of various classes, which may be among those that are basic to the language or in
turn are programmer–constructed new classes.

The term for these components of information in R is attribute, and if
one wants to interrogate an object myobject of myclass to find the names of
its components, one uses the command attribute(myobject). Or the class
name can also be used in the language’s help command: help myclass and doc
myclass in Matlab or ?myclass and help(myclass) in R.

For example, there are many reasons why one would want to get the coeffi-
cient array contained in the functional data fd class. In Matlab we do this by using
functions that usually begin with the string get, as in the command coefmat =
getcoef(fdobj) that extracts the coefficient array from object fdobj of the fd
class. Similarly, a coefficient array can be inserted into a Matlab fd object with the
command fdobj = putcoef(fdobj, coefmat). In Matlab, all the extrac-
tion functions associated with a class can be accessed by the command methods
myclass

The procedure for extracting a coefficients attribute from an R object depends on
the class of the object. If obj is an object of class fd, fdPar or fdSmooth,
coef(obj) will return the desired coefficients. (The fd class is discussed in
Chapter 4, and the fdPar and fdSmooth classes are discussed in Chapter 5.) This
is quite useful, because without this generic function, a user must know more about
the internal structure of the object to get the desired coefficients. If obj has class
fd, then obj$coefs is equivalent to coef(obj). However, if obj is of class
fdPar or fdSmooth, then obj$coefswill return NULL; obj$fd$coefswill
return the desired coefficients.
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As of this writing, a ’method’ has not yet been written for the generic coef
function for objects of class monfd, returned by the smooth.monotone function
discussed in Section 5.4.2. If obj has that class, it is not clear what a user might
want, because it has two different types of coefficients: obj$Wfdobj$coefs give
the coefficients of a functional data object that is exponentiated to produce some-
thing that is always positive and integrated to produce a non-decreasing function.
This is then shifted and scaled by other coefficients in obj$beta to produce the
desired monotonic function. In this case, the structure of objects of class monfd is
described in the help page for the smooth.monotone function. However, we can
also get this information using str(obj), which will work for many other objects
regardless of the availability of a suitable help page.

To find the classes for which methods have been written for a particular generic
function like coef, use methods(’coef’). Conversely, to find generic func-
tions for which methods of a particular class have been written, use, e.g, methods(
class=’fd’). Unfortunately, neither of these approaches is guaranteed to find
everything, in part because of ’inheritance’ of classes, which is beyond this scope
of the present discussion. For more on methods in R, see Appendix A in Chambers
and Hastie (1991).

2.4 More to Read

For a more detailed comparison of R and Matlab, see Hiebeler (2009).
There is by now a large and growing literature on R, including many documents

of various lengths freely downloadable from the R website:

http://www.r-project.org

This includes books with brief reviews and publisher information as well as freely
downloadable documents in a dozen different languages from Chinese to Viet-
namese via “Documents: Other” both on the main R page and from CRAN. This
is in addition to documentation beyond help that comes with the standard R in-
stallation available from help.start(), which opens a browser with additional
documentation on the language, managing installation, and ”Writing R Extensions”.



Chapter 3
How to specify basis systems for building
functions

We build functions in two stages:

1. First, we define a set of functional building blocks φk called basis functions.
2. Then we set up a vector, matrix, or array of coefficients to define the function as

a linear combination of these basis functions.

This chapter is primarily about setting up a basis system. The next chapter will
discuss the second step of bundling a set of coefficient values with the chosen basis
system.

The functions that we wish to model tend to fall into two main categories: pe-
riodic and non-periodic. The fourier basis system is the usual choice for periodic
functions, and the spline basis system (and bsplines in particular) tends to serve
well for non-periodic functions. We go into these two systems in some detail, and
the spline basis especially requires considerable discussion. These two systems are
often supplemented by the constant and monomial basis systems, and other systems
are described more briefly.

A set of functions in both languages are presented for displaying, evaluating and
plotting basis systems as well as for other common tasks.

3.1 Basis Function Systems for Constructing Functions

We need to work with functions with features that may be both unpredictable and
complicated. Consequently, we require a strategy for constructing functions that
works with parameters that are easy to estimate and that can accommodate nearly
any curve feature, no matter how localized. On the other hand, we don’t want to use
more parameters than we need, since doing so would greatly increase computation
time and complicate our analyses in many other ways as well.

We use a set of functional building blocks φk,k = 1, . . . ,K called basis functions,
which are combined linearly. That is, a function x(t) defined in this way is expressed
in mathematical notation as

27
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x(t) =
K

∑
k=1

ckφk(t) = c′φ(t), (3.1)

and called a basis function expansion. The parameters c1,c2, . . . ,cK are the coeffi-
cients of the expansion. The matrix expression in the last term of (3.1) uses c to stand
for the vector of K coefficients, and φ to denote a vector of length K containing the
basis functions.

We often want to consider a sample of N functions, xi(t) = ∑K
k=1 cikφk(t), i =

1, . . . ,N, and in this case matrix notation for (3.1) becomes

x(t) = Cφ(t), (3.2)

where x(t) is a vector of length N containing the functions xi(t), and coefficient
matrix C has N rows K columns.

Two brief asides on notation are in order here. We often need to distinguish be-
tween referring to a function in a general sense, and referring to its value at a spe-
cific argument value t. Expression (3.1) refers to the basis function expansions of
the value of function x at argument value t, but the expansion of x is better written
as

x =
K

∑
k=1

ckφk = c′φ . (3.3)

We will want to indicate the result of taking the mth derivative of a function x,
and we will often refer to the first derivative, m = 1, as the velocity of x; and to
the second derivative, m = 2, as its acceleration. No doubt readers will be familiar
with the notation

dx
dt

,
d2x
dt2 , . . . ,

dmx
dtm

used in introductory calculus courses. In order to avoid using ratios in text, and for
a number of other reasons, we rather prefer the notation Dx and D2x for the velocity
and acceleration of x, and so on. The notation can also be extended to zero and
negative values of m, since D0x = x and D−1x refers to the indefinite integral of x
from some unspecified origin.

The notion of a basis system is hardly new; a polynomial such as x(t) = 18t4−
2t3 +

√
17t2 +π/2 is just such a linear combination of the monomial basis functions

1, t, t2, t3, and t4 with coefficients π/2,0,
√

17,−2, and 18, respectively. Within the
monomial basis system, the single basis function 1 is often needed by itself, and we
call it the constant basis system.

But polynomials are of limited usefulness when complex functional shapes are
required. Therefore we do most of our heavy lifting with two basis systems: splines
and fourier series. These two systems often need to be supplemented by the constant
and monomial basis systems. These four systems can deal with most of the applied
problems that we are see in practice.

For each basis system we need a function in either R or Matlab to define a specific
set of K basis functions φk’s. These are the create functions. Here are the calling
statements of the create functions in R that set up constant, monomial, fourier
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and spline basis systems, omitting arguments that tend only to be used now and then
as well as default values:

basisobj = create.constant.basis(rangeval)
basisobj = create.monomial.basis(rangeval, nbasis)
basisobj = create.fourier.basis(rangeval, nbasis,

period)
basisobj = create.bspline.basis(rangeval, nbasis,

norder, breaks)

We will take each of these functions up in detail below, where we will explain the
roles of the arguments. The Matlab counterparts of these create functions are:

basisobj = create_constant_basis(rangeval);
basisobj = create_monomial_basis(rangeval, nbasis);
basisobj = create_fourier_basis(rangeval, nbasis, ...

period);
basisobj = create_bspline_basis(rangeval, nbasis, ...

norder, breaks);

In either language, the specific basis system that we set up, named in these com-
mands as basisobj, is said to be a functional basis object with the class name
basis (Matlab) or basisfd (R). Fortunately, users rarely need to worry about
the difference in class name between Matlab and R, as they rarely need to specify
the class name directly in either language.

However, we see that the first argument rangeval is required in each create
function. This argument specifies the lower and upper limits of the values of argu-
ment t and is a vector object of length 2. For example, if we need to define a basis
over the unit interval [0,1], we would use a statement like rangeval = c(0,1)
in R or rangeval = [0,1] in Matlab.

The second argument nbasis specifies the number K of basis functions. It does
not appear in the constant basis call because it is automatically 1.

Either language can use the class name associated with the object to select the
right kind of function for operations such as plotting or to check that the object is
appropriate for the task at hand. You will see many examples of this in the examples
that we provide.

We will defer a more detailed discussion of the structure of the basis or
basisfd class to the end of this chapter since this information will only tend to
matter in relatively advanced uses of either language, and we will not, ourselves,
use this information in our examples.

We will now look at the nature of each basis system in turn, beginning with
the only mildly complicated fourier basis. Then we will discuss the more challeng-
ing B-spline basis. That will be followed by more limited remarks on constant and
monomial bases. Finally, we will mention only briefly a few other basis systems that
are occasionally useful.
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3.2 Fourier Series for Periodic Data and Functions

Many functions are required to repeat themselves over a certain period T , as would
be required for expressing seasonal trend in a long time series. The fourier series is

φ1(t) = 1
φ2(t) = sin(ωt)
φ3(t) = cos(ωt)
φ4(t) = sin(2ωt)
φ5(t) = cos(2ωt)

... (3.4)

where the constant ω is related to the period T by the relation

ω = 2π/T.

We see that, after the first constant basis function, fourier basis functions are ar-
ranged in successive sine/cosine pairs, with both arguments within any pair being
multiplied by one of the integers 1,2, . . . up to some upper limit m. If the series
contains both elements of each pair, as is usual, the number of basis functions is
K = 1+2m. Because of how we define ω , each basis function repeats itself after T
time units have elapsed.

Only two pieces of information are required to define a fourier basis system:

• the number of basis functions K and
• the period T ,

but the second value T can often default to the range of t values spanned by the data.
We will use a fourier basis in the next chapter to smooth daily temperature data. The
following commands set up a fourier basis with K = 65 basis functions in R and
Matlab with a period of 365 days:

daybasis65 = create.fourier.basis(c(0,365), 65)
daybasis65 = create_fourier_basis([0,365], 65);

Note that these function calls use the default of T = 365, but if we wanted to specify
some other period T , we would use

create.fourier.basis(c(0,365), 65, TRUE)}

in R.
In either language, if K is even, the create functions for fourier series add on

the missing cosine and set K = K +1. When this leads to more basis functions than
values to be fit, the code takes steps to avoid singularity problems.

There are situations where periodic functions are defined in terms of only sines,
or only cosines. For example, a pure sine series will define functions that have the
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value 0 at the boundary values 0 and T , while a pure cosine series will define func-
tions with zero derivatives at these points. Bases of this nature can be set up by
selecting only the appropriate terms in the series by either subscripting the basis ob-
ject, or by using a component of the class called dropind that contains a vector of
indices of basis functions to remove from the final series. For example, if we wanted
to set up a fourier basis for functions centered on zero, we would want to not include
the initial constant term, and this could be achieved by either a command like

zerobasis = create.fourier.basis(rangeval, nbasis,
dropind=1)

or, using a basis object that has already been created, by something like

zerobasis = daybasis65[2:65]

Here is the complete calling sequence in R for the create.fourier.basis
in R:

create.fourier.basis(rangeval=c(0, 1), nbasis=3,
period=diff(rangeval), dropind=NULL, quadvals=NULL,
values=NULL, basisvalues=NULL, names=NULL,
axes=NULL)

A detailed description of the use of the function can be obtained by the command

help(create.fourier.basis) or ?create.fourier.basis
help create_fourier_basis or doc create_fourier_basis

in R and Matlab, respectively.

3.3 Spline series for Non-periodic Data and Functions

Splines are piecewise polynomials. Spline bases are more flexible and therefore
more complicated than finite fourier series. They are defined by the range of validity,
the knots, and the order. There are many different kinds of splines. In this section,
we consider only B-splines.

3.3.1 Break Points and Knots

Splines are constructed by dividing the interval of observation into sub-intervals,
with boundaries at points called break points or simply breaks. Over any subinterval,
the spline function is a polynomial of fixed degree or order, but the nature of the
polynomial changes as one passes into the next subinterval. We use the term degree
to refer the highest power in the polynomial. The order of a polynomial is one higher
than its degree. For example, a straight line is defined by a polynomial of degree one
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since its highest power is one, but is of order two because it also has a constant term.
We will assume in this book that the order of the polynomial segments is the same
for each subinterval.

A spline basis is actually defined in terms of a set of knots. These are related to
the break points in the sense that every knot has the same value as a break point, but
there may be multiple knots at certain break points.

At each break point, neighboring polynomials are constrained to have a certain
number of matching derivatives. The number of derivatives that must match is de-
termined by the number of knots positioned at that break point. If only one knot is
positioned at a break point, the number of matching derivatives (including the func-
tion value itself) is two less than its order, which ensures that for splines of more
than order two the join will be seen to be smooth. This is because a function com-
posed of straight line segments of order two will have only the function value (the
derivative or order 0) matching, so the function is continuous but its slope is not;
this means that the joins would not be seen as smooth by most standards.

3.3.2 Order and Degree

Order four splines are often used, consisting of cubic polynomial segments (degree
three), and the single knot per break point makes the function values and first and
second derivative values match.

By default, and in the large majority of applications, there will be only a single
knot at every break point except for the boundary values at each end of the whole
range of t. The end points, however, are assigned as many knots as the order of the
spline, implying that the function value will, typically, drop to zero outside of the
interval over which the function is defined.

3.3.3 Examples

Perhaps a couple of simple illustrations are in order. First, suppose we define a
function over [0,1] with a single interior break point at, say, 0.5. The cubic spline
basis set up in the simplest and most usual way has knots (0,0,0,0,0.5,1,1,1,1)
because a cubic spline has order four (degree three), so the end knots appear four
times each. Similarly, a linear spline has order two, so a single interior break point
at 0.5 translates into knots (0,0,0.5,1,1).

Now, suppose that we want an order 2 polygonal line, but we want to allow the
function value to change abruptly at 0.5. This would be achieved by a knot sequence
(0,0,0.5,0.5,1,1). Alternatively, suppose that want to work with cubic splines, but
we want to allow the first derivative to change abruptly at 0.5 while the function
remains continuous. The knot sequence that does this has three knots placed at 0.5.



3.3 Spline series for Non-periodic Data and Functions 33

An illustration of such a situation can be seen in the oil refinery Tray 47 function in
Figure 1.5.

You won’t have to worry about those multiple knots at the endpoints; the code
takes care of this automatically, You will be typically constructing spline functions
where you will only have to supply break points, and if these break points are equally
spaced, you won’t even have to supply these.

To summarize, spline basis systems are defined by the following:

• the break points defining sub-intervals,
• the degree or order of the polynomial segments, and
• the sequence of knots.

The number K of basis functions in a spline basis system is determined by the
relation

number o f basis f unctions = order + number o f interior knots. (3.5)

By interior here we mean only knots that are placed at break points which are not
either at the beginning or end of the domain of definition of the function. In the knot
sequence examples above, that would mean only knots positioned at 0.5.

3.3.4 B-Splines

Within this framework, however, there are several different basis systems for con-
structing spline functions. We use the most popular, namely the B-spline basis sys-
tem. Other possibilities are M-splines, I-splines, and truncated power functions.
For a more extensive discussion of splines, see, e.g, de Boor (2001) or Schumaker
(1981).

Figure 3.1 shows the thirteen order 4 B-splines corresponding to 9 equally-spaced
interior knots over the interval [0,10], constructed in R by the command

splinebasis = create.bspline.basis(c(0,10), 13)

or, as we indicated in Chapter 2, by the Matlab command

splinebasis = create_bspline_basis([0,10], 13);

Figure 3.1 results from executing the command plot(splinebasis).
Aside from the two end basis function, each basis function begins at zero and,

at a certain knot location, rises to a peak before falling back to zero and remaining
there until the right boundary. The first and last basis functions rise from the first
and last interior knot to a value of one on the right and left boundary, respectively,
but are otherwise zero. Basis functions in the center are positive only over four
intervals, but the second and third basis functions, along with their counterparts
on the right, are positive over two and three intervals, respectively. That is, all B-
spline basis functions are positive over at most four adjacent intervals. This compact
support property is important for computational efficiency since the effort required
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Fig. 3.1 The thirteen spline basis functions defined over the interval [0,10] by nine interior bound-
aries or knots. The polynomial segments are cubic or order four polynomials, and at each knot the
polynomial values and their first two derivatives are required to match.

is proportional to K as a consequence, rather than to K2 for basis functions not
having this property.

The role of the order of a spline is illustrated in Figure 3.2, where we have plotted
linear combinations of spline basis functions of orders 2, 3 and 4, called spline
functions, that best fit a sine function and its first derivative. The three R commands
that set up these basis systems are

basis2 = create.bspline.basis(c(0,2*pi), 5, 2)
basis3 = create.bspline.basis(c(0,2*pi), 6, 3)
basis4 = create.bspline.basis(c(0,2*pi), 7, 4)

Recall from relation (3.5) that, using three interior knots in each case, we increase
the number of basis functions each time that we increase the order of the spline
basis.

We see in the upper left panel the order 2 spline function, a polygon, that best
fits the sine function, and we see how poorly its derivative, a step function, fits the
sine’s derivative in the left panel. As we increase order, going down the panels, we
see that the fit to both the sine and its derivative improves, as well as the smoothness
of these two fits. In general, if we need smooth and accurate derivatives, we need to
increase the order of the spline. A useful rule to remember is to fix the order of the
spline basis to be at least two higher than the highest order derivative to be used.
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Fig. 3.2 In the left panels, the solid line indicates the spline function of a particular order that fits
the sine function shown as a dashed line. In the right panels, the corresponding fits to its derivative,
a cosine function, are shown. The vertical dotted lines are the interior knots defining the splines.

By this rule, a cubic spline basis is good choice as long as you don’t need to look at
any of its derivatives.

The order of a spline is 4 by default, corresponding to cubic polynomial seg-
ments, but if we wanted a basis system with the same knot locations but of order 6,
we would use an additional argument, as in

splinebasis = create.bspline.basis(c(0,10), 15, 6)

If, in addition, we wanted to specify the knot locations to be something other than
equally-spaced, we would use a fourth argument in the function call, with a com-
mand such as create.bspline.basis(c(0,10), nbasis, norder,
knotvec).

Notice in Figure 3.1 that any single spline basis function is nonzero only over
a limited number of intervals, a feature that can be seen more clearly if you use
the command plot(splinebasis[7]) (in R) to plot only the seventh basis
function. You would then see that an order four spline basis function is nonzero
over four subintervals, but over six subintervals for order six splines. Change 7 to 1
or 2 in this plot command to reveal that the end splines are nonzero over a smaller
number of intervals.

The B-spline basis system has a property that is often useful: the sum of the B-
spline basis function values at any point t is equal to one. Note, for example, in
Figure 3.1 that the first and last basis functions are exactly one at the boundaries.
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This is because all the other basis functions go to zero at these endpoints. Also,
because each basis function peaks at a single point, it follows that the value of a
coefficient multiplying any basis function is approximately equal to the value of the
spline function near where that function peaks. Indeed, this is exactly true at the
boundaries.

Although spline basis functions are wonderful in many respects, they tend to pro-
duce rather unstable fits to the data near the beginning or the end of the interval over
which they are defined. This is because in these regions we run out of data to define
them, so at the boundaries the spline function values are entirely determined by a
single coefficient. This boundary instability of spline fits becomes especially serious
for derivative estimation, and the higher the order of the derivative, the wilder its be-
havior tends to be at the two boundaries. However, a fourier series doesn’t have this
problem because it is periodic; in essence, the data on the right effectively “wrap
around” to help estimate the curve at the left, and vice-versa.

Let’s set up a spline basis for fitting the growth data by the methods that we
will use in Chapter 5. We will want smooth second derivatives, so we’ll use order
6 splines. There are 31 ages for height measurements in the data, ranging from 1
to 18, and we want to position a knot at each of these sampling points. Relation
(3.5) indicates that we number of basis function will be 29 + 6 = 35. If the ages of
measurement are in vector age, then the command that will set up the growth basis
in Matlab is

heightbasis = create_bspline_basis([1,18], 35,6,age);

As with the fourier basis, we can select subsets of B-spline basis functions to
define a basis by either dropping basis functions using the dropind argument, or
by selecting those basis functions that we want by using subscripts.

Here is the complete calling sequence in R for the create.bspline.basis
in R:

create.bspline.basis(rangeval=NULL, nbasis=NULL,
norder=4, breaks=NULL, dropind=NULL, quadvals=NULL,
values=NULL, basisvalues=NULL,
names="bspl", axes=NULL)

A detailed description of the use of the function can be obtained by the commands

help(create.bspline.basis)
help create_bspline_basis

in R and Matlab, respectively.

3.3.5 Computational Issues Concerning the Range of t

We conclude this section with a tip than can be important if you are using large
numbers of spline basis functions. As with any calculation on a computer where
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the accuracy of results is limited by the number of bits used to express a value,
some accuracy can be lost along the way. This can occasionally become serious.
A spline is constructed by computing a series of differences. These are especially
prone to rounding error when the values being differenced are close together. To
avoid this, you may need to redefine t so that so that the length of each sub-interval
is roughly equal to one. For the gait data example shown in Figure 1.6, where we
would construct 23 basis functions if we placed a knot at each time of observation,
it would be better, in fact, to run time from 0 to 20 than from 0 to 1 as shown.
The handwriting example is even more critical, and by changing the time unit from
seconds to milliseconds, we can avoid a substantial amount of rounding error.

On the other hand, computations involving Fourier basis functions tend to be
more accurate and stable if the interval [0,T ] is not too different from [0,2π]. We
have encountered computational issues, for example, in analyses of the weather data
when we worked with [0,365]. Once results have been obtained, it is usually a sim-
ple matter to rescale them for plotting purposes to a more natural interval.

3.4 Constant, Monomial and Other Bases

3.4.1 The constant basis

Different situations call for different basis systems. One such case leads to the sim-
plest basis system. This is the constant basis, which contains only a single function
whose value is equal to one no matter what value of t is involved. We need the
constant basis surprisingly often. For example, we will see in functional regression
and elsewhere that we might need to compare an analysis using an unconstrained
time-varying function (represented by a functional data or functional parameter ob-
ject discussed in Chapters 4 and 5, respectively) with a comparable analysis using a
constant. We can also convert a conventional scalar variable into functional form by
using the values of that variable as coefficients multiplying the constant basis.

The constant basis over, say [0,1], is constructed in R by

conbasis = create.constant.basis(c(0,1))
conbasis = create_constant_basis([0,1]);

in R and Matlab, respectively.

3.4.2 The Monomial Basis

Simple trends in data are often fit by straight lines, quadratic polynomials, and so
on. Polynomial regression is a topic found in most texts on the linear model or
regression analysis, and is, along with Fourier analysis, a form of functional data
analysis that has been used in statistics for a long time. As with constant functions,
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these may often serve as benchmark or reference functions against which spline-
based functions are compared.

The basis functions in a monomial basis are the successive powers of t : 1, t, t2, t3

and etc. The number of basis functions is one more than the highest power in the
sequence. No parameters other than the interval over which the basis is defined are
needed. A basis for cubic polynomials is defined over [0,1] in R by

monbasis = create.monomial.basis(c(0,1), 4)
monbasis = create_monomial_basis([0,1], 4);

Be warned that beyond nbasis = 7, the monomial basis system functions be-
come so highly correlated with each other that near singularity conditions can arise.

3.4.3 Other Basis Systems

Here are other basis systems available at the time of writing:

• the exponential basis, a set of exponential functions, eαkt , each with a different
rate parameter αk, and created with function create.exponential.basis.

• the polygonal basis, defining a function made up of straight line segments, and
created with function create.polygonal.basis.

• the power basis, consisting of a sequence of possibly non-integer powers and
even negative powers, of an argument t. These bases are created with the function
create.power.basis. (Negative powers should be avoided if rangeval,
the interval of validity of the basis set, includes zero.)

Many other basis systems are possible, but so far have not seemed important
enough in functional data analysis to justify writing the code required to include
them in the fda package.

However, a great deal of use in applications is made of bases defined empirically
by the principal components analysis of a sample of curves. Basis functions defined
in this way are the most compact possible in the sense of providing the best pos-
sible fit for fixed K. If one needs a low-dimensional basis system, this is the way
to go. Because principal components basis functions, which we call harmonics, are
also orthogonal, they are often referred to in various fields as empirical orthogonal
functions or “eof ”s. Further details are available in Chapter 7.

3.5 Methods for Functional Basis Objects

Common tasks like plot are called generic functions, for which methods
are written for object of different classes; see Section . In R, to see a list of generic
functions available for basis objects, use methods(class=’basisfd’).
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Once a basis object is set up, we would like to use some of these generic
functions via methods written for objects of class basisfd in R or basis
in Matlab. Some of the most commonly used generic functions with methods for
functional basis objects are listed here. Others requiring more detailed treatment
are discussed later. The R function is shown first and the Matlab version second,
separated by a /.

In R, the actual name of the function has the suffix .basisfd, but the function
is usually used with its initial generic part only, though you may see some exceptions
to this general rule. That is, one types print(basisobj) to display the structure
of functional basis object basisobj, even though the actual name of the function
is print.basisfd. In Matlab, however, the complete function name is required.

print/display the type, range, number of basis functions, and parameters
of the functional basis object are displayed. Function print is used in R and
display in Matlab. These are invoked if the object name is typed (without a
semicolon in Matlab).

summary a more compact display of the structure of the basis object
==/eq The equality of two functions is tested, and a logical value returned, as in
basis1 == basis2 in R or eq(basis1,basis2) in Matlab.

is/isa basis returns a logical value indicating whether the object is a func-
tional basis object. In R the function inherits is similar.

In R, we can extract or insert/replace an attribute of a basis object, such as its
params vector, by using the attribute name preceded by $, as in basisobj$
params. This is a standard R protocol for accessing components or attributes of
a list. In Matlab, there is a separate function for each attribute to be extracted. Not
all of the attributes of an object can be changed safely; some attribute values inter-
lock with other attribute values to define the object, and if you change these, you
may later get a cryptic error message or (worse) erroneous results. But for those
less critical attributes, which include container attributes dropind, quadvals,
basisvalues and values, the R procedure is simple. The object name with the
$ suffix appears on the left side of the assignment operator. In Matlab, each rea-
sonable replacement operation has its own function, beginning with put. The first
argument in the function is the name of the basis object, and the second argument is
the object to be extracted or inserted.

The names of these extractor and insertion functions are displayed in Table 3.1
in Section 3.6.

It is often handy to set up a matrix of basis function values, say for some spe-
cialized plotting operation or as an input into a regression analysis. To this end, we
have the basis evaluation functions

basismatrix = eval.basis(tvec, mybasis)
basismatrix = eval_basis(tvec, mybasis)

where argument tvec is a vector of n argument values within the range used to
define the basis, and argument mybasis is the name of the basis system that you
have created. The resulting basismatrix is n by K. One can also compute the
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derivatives of the basis functions by adding a third argument that specifies the degree
of the derivative, as in

Dbasismatrix = eval.basis(tvec, mybasis, 1)
Dbasismatrix = eval_basis(tvec, mybasis, 1)

Warning: Do not use the command eval without its suffix; this command is
a part of the core system in both languages and reserved for something quite dif-
ferent. For example, in R print(mybasis) does “methods dispatch”, passing
mybasis to function print.basisfd. However, eval(tvec, mybasis)
does not invoke eval.basis(mybasis).

An alternative in R is the generic predict function. With this, the previous two
function calls could be accomplished as follows:

basismatrix = predict(mybasis, tvec)
Dbasismatrix = predict(mybasis, tvec, 1)

In the execution of these two commands, the (S3) “methods dispatch” in R
searches for a function with the name of the generic combined with the name of the
class of the first argument. In this case this process will find predict.basisfd,
which in turn is a wrapper for eval.basis.

There are predictmethods written for many different classes of objects, which
makes it easier to remember the function call. Moreover, for objects with similar
functionality but different structure, a user does not have to know the exact class of
the object. We use this later with objects of class fd and fdSmooth, for example.

3.6 The Structure of the basisfd or basis Class

All basis objects share a common structure, and all of the create functions are
designed to make the call to the function basisfd in R or basis in Matlab more
convenient. Functions like these two that set up objects of a specific class are called
constructor functions. The complete calling sequence for basisfd in R is

basisfd(type, rangeval, nbasis, params,
dropind=vector("list", 0),
quadvals=vector("list", 0),
values=vector("list", 0),
basisvalues=vector("list", 0))

The equivalent Matlab calling sequence lacks specification of default values:

basis(basistype, rangeval, nbasis, params, dropind,
quadvals, values, basisvalues)

We include a brief description of each argument here for R users, but you should
use the help command in either language to get more information.
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type a character string indicating the type of basis. A number of character se-
quences are permitted for each type to allow for abbreviations and optional cap-
italization.

rangeval a vector of length 2 containing the lower and upper boundaries of the
range over which the basis is defined. If a positive number if supplied instead,
the lower limit is set to zero.

nbasis the number of basis functions
params a vector of parameter values defining the basis. If the basis type is

”fourier”, this is a single number indicating the period. That is, the basis func-
tions are periodic on the interval (0,PARAMS) or any translation of it. If the
basis type is bspline, the values are interior knots at which the piecewise poly-
nomials join.

dropind a vector of integers specifying the basis functions to be dropped, if
any. For example, if it is required that a function be zero at the left boundary, this
is achieved by dropping the first basis function, the only one that is nonzero at
that point.

The final three arguments, quadvals, values, and basisvalues, are used to
store basis function values in situations where a basis system is evaluated repeatedly.

quadvals a matrix with two columns and a number of rows equal to the num-
ber of argument values used to approximate an integral (e.g., using Simpson’s
rule). The first column contains the argument values. A minimum of 5 values is
required. For type = bspline, this is used in each inter-knot interval, the min-
imum of 5 values is often enough. These are typically equally spaced between
adjacent knots. The second column contains the weights. For Simpson’s rule,
these are proportional to 1, 4, 2, 4, ..., 2, 4, 1.

values a list, with entries containing the values of the basis function derivatives
starting with 0 and going up to the highest derivative needed. The values corre-
spond to quadrature points in quadvals. It is up to the user to decide whether
or not to multiply the derivative values by the square roots of the quadrature
weights so as to make numerical integration a simple matrix multiplication. Val-
ues are checked against quadvals to ensure the correct number of rows, and
against nbasis to ensure the correct number of columns. values contains
values of basis functions and derivatives at quadrature points weighted by square
root of quadrature weights. These values are only generated as required, and only
if the quadvals is not matrix("numeric",0,0).

basisvalues a list of lists. This is designed to avoid evaluation of a basis sys-
tem repeatedly at a set of argument values. Each sublist corresponds to a specific
set of argument values, and must have at least two components, which may be
named as you wish. The first component in an element of the list vector con-
tains the argument values. The second component is a matrix of values of the
basis functions evaluated at the arguments in the first component. Subsequent
components, if present, are matrices of values their derivatives up to a maximum
derivative order. Whenever function getbasismatrix is called, it checks the
first list in each row to see, first, if the number of argument values corresponds
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to the size of the first dimension, and if this test succeeds, checks that all of the
argument values match.

The names of the suffixes in R or the functions in Matlab that either extract or
insert attribute information into a basis object are shown in Table 3.1.

Table 3.1 The methods for extracting and modifying information in a basisfd (R) or basis
(Matlab) object

R suffix Matlab function
$nbasis getnbasis putnbasis
$dropind getdropind putdropind
$quadvals getquadvals putquadvals
$basisvalues getbasisvalues putbasisvalues
$values getvalues putvalues

3.7 Some Things to Try

1. Work the examples in the help page for create.fourier.basis and
create.bspline.basis. What do these examples tell you about these al-
ternative basis systems?

2. Generate a B-spline basis. Follow these steps:

a. Decide on the range, such as perhaps [0,1].
b. Choose an order, such as 4.
c. Specify the number of basis functions. The more you specify, the more vari-

ability you can achieve in the function. As a first choice, 23 might be reason-
able; for order four splines, this places by default knots at 0,0.05,0.10, . . . ,
0.90,0.95 and 1 over [0,1].

d. Plot the basis to see how it looks using the plot command.
e. Now evaluate and plot a few derivatives of the basis functions to see how their

smoothness diminishes with each successive order of derivative.



Chapter 4
How to Build Functional Data Objects

We saw in the last chapter that functions are built up from basis systems φ1(t), . . . ,
φK(t) by defining the linear combination

x(t) =
K

∑
k=1

ckφk(t) = c′φ(t).

That chapter described how to build a basis system. Now we take the next step,
defining a functional data object by combining a set of coefficients ck (and other
useful information) with a previously specified basis system.

4.1 Adding Coefficients to Bases to Define Functions

4.1.1 Coefficient Vectors, Matrices and Arrays

Once we have selected a basis, we have only to supply coefficients in order to define
an object of the functional data class (with class name fd).

If there are K basis functions, we need a coefficient vector of length K for each
function that we wish to define. If only a single function is defined, then the coeffi-
cients are loaded into a vector of length K or a matrix with K rows and one column.
If N functions are needed, say for a sample of functional observations of size N,
we arrange these coefficient vectors in a K by N matrix. If the functions themselves
are multivariate of dimension m, as would be the case, for example, for positions
in three-dimensional space (m = 3), then we arrange the coefficients into an three-
dimensional array of dimensions K, N, and m, respectively. (A single multivariate
function is defined with a coefficient array with dimensions K,1, and m; see Section
2.2 for further information on this case.) That is, the dimensions are in the order
“number of basis functions,” “number of functions or functional observations” and
“number of dimensions of the functions.”

43
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Here is the command that creates a functional data object using the basis with
name daybasis65 that we created in the previous chapter, with the coefficients
for mean temperature for each of the 35 weather stations organized into the 65 by
35 matrix coefmat:

tempfd = fd(coefmat, daybasis65).

You will seldom need to use the fd function explicitly because other functions
call it after computing coefmat as a representation of functional data in terms of
the specified basis set. We will discuss some of these functions briefly later in this
chapter and in more detail in the next.

4.1.2 Labels for Functional Data Objects

Let us take a moment here to reflect on what functional data objects mean. Func-
tional data objects represent functions, and functions are one-to-one mappings or
relationships between values in a domain and values in a range. In the language of
graphics, the domain values are points on the horizontal coordinate or abscissa, and
the range values are points in a vertical coordinate or ordinate. For the purpose of
this book, we consider mostly one-dimensional domains, such as time, but we do
allow for the possibility that the range space of multidimensional, such as (X,Y,Z)
triples for the coordinates of points in a three-dimensional space. Finally, we also
allow for the possibility of multiple or replicated functions.

Adding labels to functional data objects is a convenient way to supply the infor-
mation needed for graphical displays. Specialized plotting functions that the code
supplies in either language can look for these labels, and if they are present, place
them where appropriate for various kinds of plots. The attribute for labels for func-
tional data objects is called fdnames.

If we want to supply labels, we will typically need three, and they are, in order:

1. a label for the domain, such as “Time”, “Day”, and so on.
2. a label for the replication dimension, such as as “Weather station”, “Child”, etc.
3. a label for the range, such as “Temperature (deg. C)”, “Space”, etc.

We refer to these three labels as the generic labels for the functional data object.
In R, we supply labels in a list object of length 3. An empty version of such a list

can be set up by the command

fdnames = vector("list", 3)

The corresponding object in Matlab is a cell array of length 3, that may be set up by

fdnames = cell(1,3)

In addition to generic labels for each dimension of the data, we may also want,
for the range and/or for the replication dimension, to supply sets of labels, each la-
bel applying to a specific dimension or replicate. For example, for the gait data, we
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may want a label such as “Angle” to be common or generic to the two observed
angles, but in addition require two labels such as “Knee” and “Hip” to distinguish
which angle is being plotted. Similarly, in addition to “Weather Station” to describe
generically the replication dimension for the weather data as a whole, we probably
want to supply names for each weather station. Thus, labels for replicates and vari-
ables have the potential to have two levels, a generic level and a specific level. Of
course, if there is only one dimension for range or only one replicate, a two-level
labels structure of this nature would usually be superfluous.

In the simple case where a dimension only needs a single name, labels are sup-
plied as strings having the class character in R or char in Matlab. For example,
we may supply only a common name such as “Child” for the replication dimension
of the growth data, and “Height(cm)” for the range, combined with “Age (years)”
for the domain. Here is a command that sets up these labels in R directly, without
bothering to set up an empty list first,

fdnames = list("Age (years)", "Child", "Height (cm)")

or, assuming that the empty list has already been defined:

fdnames[[1]] = "Age (years"
fdnames[[2]] = "Child"
fdnames[[3]] = "Height (cm)"

Since Matlab accesses cell array elements by curly brackets the expressions are

fdnames{1} = ’Age (years)’
fdnames{2} = ’Child’
fdnames{3} = ’Height (cm)’

However, when the required label structure for either the replication or the range
dimension is two-level, we take advantage of the fact that the elements of a list in
R can be character vectors or lists, and entries in cell arrays in Matlab can be cell
arrays. We deal with the two languages separately in the following two paragraphs.

In R generic and specific names can be supplied by a named list. The common
or generic label is supplied by the name of the list, and the individual labels by the
entry of the list, this entry being of either the character or list class. Take weather
stations for the weather data, for example. The second element is itself a list, defined
perhaps by the commands

station = vector("list", 35)
station[[ 1]] = "St. Johns"

.

.

.
station[[35]] = "Resolute"

A command to set up a labels list for the daily temperature data might be

fdnames = list("Day",
"Weather Station" = station,
"Mean temperature (deg C)")
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Notice that the names attribute of a list entry can be a quoted string containing
blanks, such as what we have used here. The other two names, argname and
varname, will only be used if the entry is NULL or "" or, in the case of vari-
able name, if the third list entry contains a vector of names of the same length as
the number of variables. The code also checks that the number of labels in the label
vector for replications equals the number of replications, and uses the names value
if this condition fails.

Matlab does not have an analogue of the names attribute in R, but each entry
in the cell array of length three can itself be a cell array. If the entry is a either
string or a cell array whose length does not match the required number of labels,
then the Matlab plotting functions will find in this entry a generic name common
to all replicates or variables. But if the entry for either the replicates or variables
dimension is a cell array of length 2, then the code expects the generic label in the
first entry and a character matrix of the appropriate number of rows in the second.
The weather station example above in Matlab becomes

station=cell(1,2);
station{1} = ’Weather Station’;
station{2} = [’St. Johns ’;

’Charlottetown’;
.
.
.

’Resolute ’];

Note that a series of names are stored as a matrix of characters, so that enough
trailing blanks in each name must be added to allow for the longest name to be
used.

4.2 Methods for Functional Data Objects

As for the basis class, there are similar generic functions for printing, summarizing
and testing for class and identity for functional data objects.

There are, in addition some useful methods for doing arithmetic on functional
data objects and carrying out various transformations. For example, we can take the
sum, difference, power or point-wise product of two functions with commands like

fdsumobj = fdobj1 + fdobj2
fddifobj = fdobj1 - fdobj2
fdprdobj = fdobj1 * fdobj2
fdsqrobj = fdobjˆ2

One can, as well, substitute a scalar constant for either argument in the three arith-
metic commands. We judged point-wise division to be too risky since it is difficult
to detect if the denominator function is nonzero everywhere. Similarly,
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fdobjˆa

may produce an error or nonsense if a is negative and fdobj is possibly zero at
some point.

Beyond this, the results of multiplication and exponentiation may not be what
one might naively expect. For example, the following produces a straight line from
(-1) to 2 with a linear spline basis:

tstFn0 <- fd(c(-1, 2), create.bspline.basis(norder=2))
plot(tstFn0)

However,

tstFn0ˆ2

is not a parabola but a straight line that approximates this parabola over rangeval
using the same linear basis set. We get a similar approximation from
tstFn0*tstFn0, but it differs in the third significant digit.

What do we get from

tstFn0ˆ(-1)?

The result may be substantially different from what many people expect. These are
known ’infelicities’ in fda, which the wise user will avoid. Using cubic or higher
order splines with larger basis sets than in this example will reduce substantially
these problems in many but not all cases.

The mean of a set of functions is achieved by a command like

fdmeanobj = mean(fdobj).

Similarly, functions are summed by the sum function. As the software evolves, we
expect that other useful methods will be added (and infelicities further mitigated).

We often want to work with the values of a function at specified values of ar-
gument t, stored, say, in vector tvec. The evaluation function comparable to that
used in Chapter 3 for basis functions is eval.fd in R and eval fd in Matlab.
For example, we could evaluate functional data object thawfd at times in vector
day.5 by the R command

thatvec = eval.fd(tvec, thawfd)

The same command can be used to evaluate a derivative of thawfd by supplying
the index of the derivative as the third argument. The second derivative of thawfd
is evaluated by

D2thatvec = eval.fd(tvec, thawfd, 2)

More generally, if Lfdobj is an object of the linear differential operator Lfd class,
defined in Section 4.4, then

Lthatvec = eval.fd(tvec, thawfd, Lfdobj)
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evaluates the result of applying this operator to thawfd at the argument values in
tvec.

Plotting functions can be as simple as using the command plot(tempfd).
Again, Matlab and R use the class name to find the plotting function that is appro-
priate to what is being plotted, which in this case is an object of the fd class. The
functional data version of the plot function can also use most of the optional ar-
guments available in the standard plotting function for controlling line color, style
and width; axis limits, and so forth.

Here is a set of R commands that plot the mean temperature curves for the Cana-
dian weather data after loading the fda package. First, we set up the mid-day times
for each of the days in years that are not leap years.

daytime = (1:365)-0.5

In this book we will find more of interest in the winter months, so we highlight these
by re-arranging the standard year to run from July 1 to June 30.

JJindex = c(182:365, 1:181)
tempmat = daily$tempav[JJindex,]

Next we set up a fourier basis with 65 basis functions, as we did in Chapter 3.

tempbasis = create.fourier.basis(c(0,365),65)

Now we use the main smoothing function that we will study in Chapter 5 to set up
the functional data object tempfd, and install names for the three dimensions of
the object.

tempfd = smooth.basis(daytime, tempmat, tempbasis)$fd
tempfd$fdnames = list("Day (July 2 to June 30)",

"Weather Station",
"Mean temperature (deg. C)")

Finally we plot the 35 mean temperature functions, shown in Figure 4.1, using the
optional standard plotting arguments col and lty to control the color and line
style, respectively.

plot(tempfd, col=1, lty=1)

Lines defined by functional data objects can be added to an existing plot by the
lines function in R or the line function in Matlab.

4.2.1 Illustration: Sinusoidal Coefficients

We pointed out in Chapter 3 that curves defined by B-spline bases tend to follow the
same track as their coefficients. Here is an example. This R code sets up a coefficient
vector of length 13 consisting of values of a sine wave at equally-spaced values
over its cycle, and then uses these along with the basis system plotted in Figure
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Fig. 4.1 Mean temperature curves estimated by R command tempfd =
smooth.basis(daytime, tempmat, tempbasis)$fd, and plotted by command
plot(tempfd).

3.1 to define a functional data object. Both the defined curve and the sine-valued
coefficients are plotted in Figure 4.2. The curve is not a perfect rendition of a spline,
but it is surprisingly close.

basis13 = create.bspline.basis(c(0,10), 13)
tvec = seq(0,1,len=13)
sinecoef = sin(2*pi*tvec)
sinefd = fd(sinecoef, basis13, list("t","","f(t)"))
op = par(cex=1.2)
plot(sinefd, lwd=2)
points(tvec*10, sinecoef, lwd=2)
par(op)

4.3 Smoothing using Regression Analysis

The topic of smoothing data will be taken up in detail in Chapter 5. However, we can
sometimes get good results without more advanced smoothing machinery simply
by keeping the number of basis functions small relative to the amount of data being
approximated.
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Fig. 4.2 The thirteen spline basis functions defined in Figure 3.1 are combined with coefficients
whose values are sinusoidal to construct the functional data object plotted as a solid line. The
coefficients themselves are plotted as circles.

4.3.1 Plotting the January Thaw

Canadians love to talk about the weather, and especially in mid-winter when the
weather puts a chill on many other activities. The January thaw is eagerly awaited,
and in fact the majority of Canadian weather stations show clear evidence of these
few days of relief. The following code loads 34 years of daily temperature data for
Montreal, extracts temperatures for January 16th to February 15th and plots their
mean, shown in Figure 4.3.

# This assumes the data are in "MtlDaily.txt"
# in the working directory getwd()
MtlDaily = matrix(scan("MtlDaily.txt",0),34,365)
thawdata = t(MtlDaily[,16:47])
daytime = (1:32)+16.5
par(cex=1.2)
plot(daytime, apply(thawdata,1,mean), "b", lwd=2,

xlab="Day", ylab="Temperature (deg C)")

We can fit these data by regression analysis by using a matrix of values of a basis
system taken at the times in vector daytime. Here we construct a basis system
over the interval [16,48] using 7 cubic B-splines, and evaluate this basis at these
points to produce a 32 by 7 matrix. By default the knots are equally spaced over this
interval.



4.3 Smoothing using Regression Analysis 51

20 25 30 35 40 45

−1
4

−1
3

−1
2

−1
1

−1
0

−9

Day

Te
mp

era
tur

e (
de

g C
)

Fig. 4.3 Temperatures at Montreal from January 16 to February 15 averaged over 1961 to 1994.

thawbasis = create.bspline.basis(c(16,48),7)
thawbasismat = eval.basis(daytime, thawbasis)

Now we can compute coefficients for our functional data object by the usual equa-
tions for regression coefficients, b = (X′X)−1X′y, and construct a functional data
object by combining them with our basis object. A plot of these curves is shown
in Figure 4.4 and, sure enough, we do see a fair number of them peaking between
January 20 and 25, and a few others with later peaks as well.

thawcoef = solve(crossprod(thawbasismat),
crossprod(thawbasismat,thawdata))

thawfd = fd(thawcoef, thawbasis,
list("Day", "Year", "Temperature (deg C)"))

plot(thawfd, lty=1, lwd=2, col=1)

We can use these objects to illustrate two useful tools for working with func-
tional data objects. We often want to compare a curve to the data from which it was
estimated. In the following command we use function plotfit.fd to plot the
data for 1961 along with corresponding B-spline fit. The command also illustrates
the possibility of using subscripts on functional data objects. The result is shown
in Figure 4.5, where the fit suggests a thaw before January 15 and another in early
February. The legend on the plot indicates that the standard deviation of the variation
of the actual temperatures around the curve is four degrees Celsius.

plotfit.fd(thawdata[,1], daytime, thawfd[1],
lty=1, lwd=2)
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Fig. 4.4 Functional versions of temperature curves for Montreal between January 16 and February
15. Each curve corresponds to one of the years from 1960 to 1994.
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Fig. 4.5 The temperature curve for 1961 along with the actual temperatures from which it is esti-
mated.
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4.4 The Linear Differential Operator or Lfd Class

We noted in Chapter 1 that the possibility of using a derivative of a function is
perhaps the most distinctive feature of functional data analysis. For example, we
will take advantage of the information in derivatives in Chapter 5 to customize our
definition of what we mean by a “smooth” function. Our discussion in Section 1.4
also implied that the concept of a “derivative” could itself be extended by proposing
linear combinations of derivatives, called linear differential operators.

Smoothing is supported using the Lfd class that expresses the concept of a linear
differential operator. An important special case is the harmonic acceleration oper-
ator that we will use extensively with fourier basis functions to smooth periodic
data.

The notation Lx refers to the application of a linear differential operator L to a
function x. This might be something as basic as acceleration, Lx = D2x, as moder-
ately sophisticated as harmonic acceleration L = ω2D+D3, or as general as

Lx(t) = β0(t)x(t)+β1(t)Dx(t)+ ...+βm−1(t)Dm−1x(t)+Dmx(t) (4.1)

where the known linear differential operator coefficient functions β j(t), j = 0, . . . ,m−
1 are either constants or functions.

How do we express this idea in code so as to permit the use of the full potential
residing in (4.1)? How do we even do this for harmonic acceleration?

The Lfd class is defined by a constructor function Lfd that takes as its input two
arguments:

nderiv the highest order m of the derivative in (4.1)
bwtlist a list object in R or a one-dimensional cell array object in Matlab of

length m. This object contains the coefficient functions β j defining the opera-
tor. If a coefficient function varies over t, these will be functional data objects
with a single replication. But if the coefficient is constant, including zero, the
corresponding entry will be that constant.

For example, consider the harmonic acceleration object. Here m = 3, and β0 =
β2 = 0 while β1 = ω2. In R we could define the harmonic acceleration Lfd object
harmaccelLfd in this way:

betalist = vector("list", 3)
betalist[[1]] = 0
betalist[[2]] = omegaˆ2
betalist[[3]] = 0
harmaccelLfd = Lfd(3, betalist)

This a bit cumbersome for the majority of situations where the differential opera-
tor is just a power of D, or where all the coefficients β j are constants. Consequently,
we have two functions, int2Lfd and vec2Lfd, to deal with these simpler situa-
tions:

accelLfd = int2Lfd(2)
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harmaccelLfd = vec2Lfd(c(0,omegaˆ2,0))

The commands class(accelLfd) and class(harmaccelLfd) will pro-
duce Lfd as output.

We are now equipped to evaluate the result of applying any linear differential
operator to a functional data object. We can illustrate this by applying an appro-
priately defined harmonic acceleration operator to temperature curves in functional
data object tempfd:

Ltempmat = eval.fd(daytime, tempfd, harmaccelLfd)

This was used to prepare Figure 1.12.
A functional data object for the application of a linear differential operator to an

existing functional data object is created by the deriv.fd function in R or the
deriv fd function in Matlab. The first argument is the functional data object for
which the derivative is required, and the second is either a non-negative integer or a
linear differential operator object. For example

D2tempfd = deriv.fd(tempfd, 2)
Ltempfd = deriv.fd(tempfd, harmaccelLfd)

4.5 Bivariate Functional Data Objects: Functions of Two
Arguments

The availability of a sample of N curves makes us wonder how they vary among
themselves. The analogue of the correlation and covariance matrices in the multi-
variate context are the correlation and covariance functions or surfaces, ρ(s, t) and
σ(s, t). The value ρ(s, t) specifies the correlation between the values x(s) and x(t)
over a sample or population of curves, and similarly for σ(s, t). This means that
we also need to be able to define functions of two arguments, in this case s and t.
We will need this capacity elsewhere. Certain types of functional regression require
bivariate regression coefficient functions.

The bivariate functional data class with name bifd is designed to do this. Ob-
jects of this class are created in much the same way as fd objects, but this now
requires two basis systems and a matrix of coefficients for a single such object. In
mathematical notation, we define an estimate of a bivariate correlation surface as

r(s, t) =
K

∑
1

L

∑
1

bk,`φk(s)ψ`(t) = φ ′(s)Bψ(t), (4.2)

where φk(s) is a basis function for variation over s and ψ`(t) is a basis function for
variation over t. The following command sets up such a bivariate functional object:

corrfd = bifd(corrmat, sbasis, tbasis).

However, situations where you would have to set up bivariate functional data
objects are rare, since most of these are set up by R or Matlab functions, var.fd
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and var fd in R and Matlab, respectively. We will use these functions in Chapter
6.

4.6 The structure of the fd and Lfd Classes

To summarize the most important points of this chapter, we give here the arguments
of the constructor function fd for an object of the fd class.

coef a vector, matrix, or three-dimensional array of coefficients. The first dimen-
sion (or elements of a vector) corresponds to basis functions. A second dimen-
sion corresponds to the number of functional observations, curves or replicates. If
coef is a three-dimensional array, the third dimension corresponds to variables
for multivariate functional data objects.

basisobj a functional basis object defining the basis
fdnames A list of length 3, each member potentially being a string vector con-

taining labels for the levels of the corresponding dimension of the data. The first
dimension is for argument values and is given the default name ”time”. The sec-
ond is for replications and is given the default name ”reps”. The third is for
functions and is given the default name ”values”.

The arguments of the constructor function Lfd for objects of the linear differential
operator class are

nderiv a nonnegative integer specifying the order m of the highest order deriva-
tive in the operator

bwtlist a list of length m. Each member contains a functional data object that
acts as a weight function for a derivative. The first member weights the function,
the second the first derivative, and so on up to order m−1.

4.7 Some Things to Try

1. Generate a random function using a B-spline basis. Follow these steps:

a. Decide on the range, such as [0,1].
b. Choose an order, such as 4 for cubic splines.
c. Specify the number of basis functions. The more you specify, the more vari-

ability you can achieve in the function. As a first choice, 23 might be rea-
sonable; for order four splines over [0, 1], this places by default knots at
0,0.05,0.10, . . . , 0.90,0.95 and 1.

d. Now set up the basis function system in the language you are working with.
Plot the basis to see how it looks using the plot command (as described in
the previous chapter on basis sets).
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e. Next define a vector of random coefficients using your language’s normal ran-
dom number generator. These can vary about zero as a mean, but you can
also vary them around some function, such as sin(2πt) over [0,1]. If you use
a trend, because of the unit sum property of B-splines described above, the
function you define will also vary around this trend. You may want to play
around their standard deviation as a part of this exercise.

f. Finally, set up a functional data object having a single function using the fd
command.

2. Plot this function using the plot command.
3. Plot both the function and the coefficients on the same graph. To plot the coef-

ficients for order 4 splines, plot all but the second and third in from each end
against knot locations. For example, if you have 23 basis functions, and hence
23 coefficients, plot coefficients 1, 4, 5, and so on up to 20, and then the 23rd.
The 21 knots (including end points) are equally spaced by default. At same time,
evaluate the function using the eval.fd (R) or eval fd (Matlab) function at
a fine mesh of values, such as 51 equally spaced values. Plot these values over
the coefficients that you have just plotted. Compare the trend in the coefficients
and the curve. If you specified a mean function for the random coefficients, you
might want to add this to the plot as well.

4. You might want to extend this exercise to generating N random functions, and
plot all of them simultaneously to see how much variation there is from curve
to curve. This will, of course, depend on the standard deviation of the random
coefficients that you use.

5. Why not also plot the first and second derivatives of these curves, evaluated again
using the eval.fd function and specifying the order of derivative as the third
argument. You might want to compare the first derivative with the difference
values for the coefficients.



Chapter 5
Smoothing: Computing Curves from Noisy Data

The previous two chapters have introduced the Matlab and R code needed to specify
basis function systems, and then to define curves by combining these coefficient
arrays. For example, we saw how to construct a basis object such as heightbasis
to define growth curves, and how to combine it with a matrix of coefficients such as
heightcoef so as to define growth functional data objects such as were plotted
in Figure 1.1.

We now turn to methods for computing these coefficients with more careful con-
sideration of measurement error. For example, how do we compute these coefficients
to obtain an optimal fit to data such as the height measurements for 54 girls in the
Berkeley growth study stored in the 31 by 54 matrix that we name heightmat? Or
how do we replace the rather noisy mean daily precipitation observations by smooth
curves?

Two strategies are discussed. The simplest revisits the use of regression analysis
that concluded Chapter 4, but now uses a special function for this purpose. The
second and more elaborate strategy aims to miss nothing of importance in the data
by using a powerful basis expansion, but avoids over-fitting the data by imposing a
penalty on the “roughness” of the function, where the meaning of “rough” can be
adapted to special features of the application from which the data were obtained.

5.1 Regression Splines: Smoothing by Regression Analysis

We tend, perhaps rather too often, to default to defining data fitting as the minimiza-
tion of the sum of squared errors or residuals,

SSE(x) =
n

∑
j
[y j− x(t j)]2. (5.1)

When smoothing function x is defined as a basis function expansion (3.1), the least
squares estimation problem becomes

57
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SSE(c) =
n

∑
j
[y j−

K

∑
k

ckφk(t j)]2 =
n

∑
j
[y j−φ(t j)′c]2. (5.2)

The approach is motivated by the error model

y j = x(t j)+ ε j = c′φ(t)+ ε j = φ ′(t j)c+ ε j (5.3)

where the true errors or residuals ε j are statistically independent and have a normal
or Gaussian distribution with mean 0 and constant variance. Of course, if we look
closely, we often see that this error model is too simple, but the least squares esti-
mation process can be defended on the grounds that it tends to give nearly optimal
answers relative to “best” estimation methods so long as the true error distribution is
fairly short-tailed, and departures from the other assumptions are reasonably mild.

Readers will no doubt recognize (5.3) as the standard regression analysis model,
along with its associated least squares solution. Using matrix notation, let the n-
vector y contain the n values to be fit, vector ε contain the corresponding true resid-
ual values, and n by k matrix Φ contain the basis function values φk(t j). Then we
have

y = Φc+ ε

and the least squares estimate of the coefficient vector c is

ĉ = (Φ ′Φ)−1Φ ′y. (5.4)

R and Matlab already have the capacity to smooth data through their functions
for regression analysis. Here’s how we can combine these functions with the basis
creation functions available in the fda package. Suppose that we want a basis sys-
tem for the growth data with K = 12 basis functions using equally spaced knots.
This can be accomplished in R with the following command:

heightbasis12 = create.bspline.basis(c(1,18), 12, 6)

If we evaluate the basis functions at the ages of measurement in vector object age
by the command basismat = eval.basis(age, heightbasis12) (in
R), then we have a 31 by 12 matrix of covariate or design values that we can use in
a least squares regression analysis defined by commands such as

heightcoef = lsfit(basismat, heightmat,
intercept=FALSE)$coef

heightcoef = basismat\heightmat

in R and Matlab, respectively. Spline curves fit by regression analysis are often
referred to as regression splines in statistical literature.

However, the function smooth.basis (R) and smooth basis (Matlab) are
provided to produce the same results as well as much more without the need to
explicitly evaluate the basis functions, through the R command

heightList = smooth.basis(age, heightmat,
heightbasis12)
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and the Matlab version

[fdobj, df, gcv, coef, SSE, penmat, y2cMap] = ...
smooth_basis(age, heightmat, heightbasis12);

The R function smooth.basis returns an object heightlist of the list
class, and the Matlab function smooth basis returns all seven of its objects as
an explicit sequence of variable names surrounded by square brackets. However, if
we just wanted the first three returned objects as separate objects, in R we would
have to extract them individually:

heightfd = heightList$fd
height.df = heightList$df
height.gcv = heightList$gcv

In Matlab, we would just request only the first three objects:

[fdobj, df, gcv] = ...
smooth_basis(age, heightmat, heightbasis12);

In any case, the three most important returned objects are the following, where the
names in bold type are used in each language to retrieve the objects:

fd an object of class fd containing the curves that fit the data.
df the degrees of freedom used to define the fitted curves
gcv the value of the generalized cross-validation criterion: a measure of lack of

fit discounted for degrees of freedom. If there are multiple curves, a vector is re-
turned containing gcv values for each curve. (See Ramsay and Silverman (2005)
for details.)

Notice that the coefficient estimate ĉ in (5.4) is obtained from the data in the
vector y by multiplying this vector by a matrix, to which we give the text name
y2cMap. We will use this matrix in many places in this book where we need to
estimate the variability in quantities determined by ĉ, so we here give it a name:

y2cMap= (Φ ′Φ)−1Φ ′ so that ĉ = y2cMap y. (5.5)

Here is the corresponding R code for computing this matrix for the growth data:

age = growth$age
heightbasismat = eval.basis(age, heightbasis12)
y2cMap = solve(crossprod(heightbasismat),

t(heightbasismat))

In Matlab this last command would be

y2cMap = (heightbasismat’*heightbasismat) \ ...
heightbasismat’;

This code for the mapping matrix y2cMap only applies to regression-based
smoothing. More general expressions for y2cMap includes other term(s) that dis-
appear with zero smoothing. This is important because as we change the smoothing,
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y2cMap changes, but ĉ is still the product of y2cMap, however changed, and the
data.

While we’re at it, we also will need what is often called the “hat” matrix, denoted
by H. This maps the data vector into the vector of fitted values

H = Φ(Φ ′Φ)−1Φ ′ so that ŷ = Hy. (5.6)

The regression approach to smoothing data only works if the number K of ba-
sis functions is substantially smaller than the number n of sampling points. With
the growth data, it seems that roughly K = 12 spline basis functions are needed to
adequately smooth the growth data. Larger values of K will tend to under–smooth
or over–fit the data. Interestingly, after over a century of development of parametric
growth curve models, the best of these also use about 12 parameters in this example.

Although regression splines are often adequate for simple jobs where only curve
values are to be used, the instability of regression spline derivative estimates at the
boundaries is especially acute. The next section describes a more sophisticated ap-
proach that can produce much better derivative results and also allows finer control
over the amount of smoothing.

5.2 Data Smoothing with Roughness Penalties

The roughness penalty approach uses a large number of basis functions, possibly
extending to one basis function per observation and even beyond, but at the same
time imposing smoothness by penalizing some measure of function complexity. For
example, we have already in the last chapter defined a basis system for the growth
data called heightbasis that has 35 basis functions, even though we have only
31 observations per child. Wouldn’t using such a basis system result in over-fitting
the data, as well as singularity problems on the computational side? That answer is,
“Not if a positive penalty is applied to the degree to which the fit is not smooth.”

5.2.1 Choosing a Roughness Penalty

We define a measure of the roughness of the fitted curve, and then minimize a fitting
criterion that trades off curve roughness against lack of data fit.

Here is popular way to quantify the notion “roughness” of a function. The square
of the second derivative [D2x(t)]2 of a function x at argument value t is often called
its curvature at t, since a straight line, which we all tend to agree has no curvature,
has second derivative zero. Consequently, a measure of a function’s roughness is the
integrated squared second derivative or total curvature

PEN2(x) =
∫

[D2x(t)]2 dt . (5.7)
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(Unless otherwise stated, all integrals in this book are definite integrals over the
range of t.)

Penalty terms such as PEN2(x) provide smoothing because wherever the function
is highly variable, the square of the second derivative [D2x(t)]2 is large.

We can apply this concept to derivative estimation as well. If we are interested in
the second derivative D2x of x, chances are that we want it to appear to be smooth.
This suggests that we ought to penalize the curvature of the second derivative, that
is, use the roughness measure

PEN4(x) =
∫

[D4x(t)]2 dt . (5.8)

But is “roughness” always related to the second derivative? Thinking a bit more
broadly, we can define roughness as the extent to which a function departs from
some baseline “smooth” behavior. For periodic functions of known period that can
vary in level, such as mean temperature curves, the baseline behavior can be con-
sidered to be shifted sinusoidal variation,

x(t) = c0 +a1 sinωt +b1 cosωt, (5.9)

that is, represented by the first three terms in the fourier series for some known
ω = 2π/T. If we compute ω2Dx+D3x for such a simple function, we find that the
result is exactly 0. We refer to the differential operator L = ω2D + D3 in Ramsay
and Silverman (2005) as the harmonic acceleration operator. What happens when
we apply this harmonic acceleration operator to higher order terms in a fourier
series:

L[a j sin jωt +b j cosωt] = ω2 j(1− j2)[a j cos jωt−b j sinωt]. (5.10)

This expression is 0 for j = 1 and increases with the cube of j. This property suggests
that the integral of the square of this harmonic acceleration operator may be a
suitable measure of roughness for periodic data like the temperatures curves:

PENL(x) =
∫

[Lx(s)]2 ds . (5.11)

When used on a finite fourier series, this expression is proportional to [ j2(1− j2)2].
Thus, the term with j = 1 does not get penalized at all, and higher order terms in the
fourier approximation receive substantially higher penalties.

Whatever roughness penalty we use, we add some multiple of it to the error sum
of squares to define the compound fitting criterion. For example, using PEN2(x)
gives us the following:

F(c) = ∑
j
[y j− x(t j)]2 +λ

∫
[D2x(t)]2dt, (5.12)
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where x(t) = c′φ(t). The smoothing parameter λ specifies the emphasis on the sec-
ond term penalizing curvature relative to goodness of fit quantified in the sum of
squared residuals in the first term. As λ moves from 0 upward, curvature becomes
increasingly penalized. With λ sufficiently large, D2x will be essentially 0. This in
turn implies that x will be essentially a straight line = polynomial of degree one,
order two, except possibly at a finite number of isolated points such as join points
or knots of a B-spline. At the other extreme, λ → 0 leaves the function x free to fit
the data as closely as possible with the selected basis set, sometimes at the expense
of some fairly wild variations in the approximating function.

It is usually convenient to plot and modify λ on a logarithmic scale.
More generally, the use of a differential operator L to define roughness will result

in λ → ∞ forcing the fit to approach more and more closely a solution to the differ-
ential equation Lx = 0. If L = Dm, this solution will be a polynomial of order m (i.e.,
degree m− 1). For the harmonic acceleration operator, this solution will be of the
form (5.9). In this way, we can achieve an important new form of control over the
smoothing process, namely by having the capacity to define the concept “smooth”
in a way that is appropriate to the application.

5.2.2 The Roughness Penalty Matrix R

We can now provide an explicit form of the estimate of the coefficient vector ĉ for
roughness penalty smoothing that is the counterpart of (5.4) for regression smooth-
ing. The general version of the roughness penalized fitting criterion (5.12) is

F(c) = ∑
j
[y j− x(t j)]2 +λ

∫
[Lx(t)]2dt. (5.13)

If we substitute the basis expansion x(t) = c′φ(t) = φ ′(t)c into this equation, we get

F(c) = ∑
j
[y j−φ ′(t j)c]2 +λc′[

∫
Lφ(t)Lφ ′(t)dt]c. (5.14)

Now we define the order K symmetric roughness penalty matrix as

R =
∫

φ(t)φ ′(t)dt (5.15)

With this defined, it is a relatively easy exercise in matrix algebra to work out that

ĉ = (Φ ′Φ +λR)−1Φ ′y. (5.16)

From here we can define the matrix y2cMap that we will use in Chapter 6 for
computing confidence regions about estimated curves:

y2cMap= (Φ ′Φ +λR)−1Φ ′. (5.17)
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The corresponding hat-matrix is now

H = Φ(Φ ′Φ +λR)−1Φ ′. (5.18)

But how is one to compute matrix R in either language? This is taken care of in
the function eval.penalty in R and eval penalty in Matlab. These func-
tions require two arguments:

basisobj a functional basis object of the basisfd class in R and basis
class in Matlab

Lfdobj a linear differential operator object of the Lfd class

In the case of the harmonic accelerator operator, we can calculate the roughness
penalty matrix Rmat in R by

Rmat = eval.penalty(tempbasis, harmaccelLfd)

We hasten to add that most routine functional data analyses will not actually
need to calculate roughness penalty matrices, since this happens inside functions
such as smooth.basis. Computing R can involve numerical approximations to
the integrals involved in (5.15). However, for a spline basis, if L is a power of D, than
the integrals are analytically available and evaluated to within machine precision.

5.2.3 The Smoothing or “Hat” Matrix and Degrees of Freedom

The values x(t j), j = 1, . . . ,n defined by minimizing criterion (5.14) are critical for
a detailed analysis of how well alternative choices λ work for fitting the data values
y j. Let’s denote these by the vector x̂ and the corresponding data values by y. It turns
out (see Ramsay and Silverman (2005) for details) that x̂ has the following linear
relationship to y:

x̂ = H(λ )y. (5.19)

The smoothing matrix H(λ ) is square, symmetric and of order n and, needless to say,
a function of λ . It has many uses, among which is that a measure of the effective
degrees of freedom of the fit defined by λ is defined by

df(λ ) = trace[H(λ )], (5.20)

and the associated degrees of freedom for error is n−df(λ ).
As λ → 0,df(λ ) → min(n,K), where n = the number of observations, and K

= the number of basis functions. Similarly, as λ → ∞,df(λ )→ m, where m is the
order of the highest derivative used to define the roughness penalty.
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5.2.4 Defining Smoothing by Functional Parameter Objects

Going beyond the smoothing problem, we need the general capacity in functional
data analysis to impose smoothness on estimated functional parameters, of which
the smoothing curve is only one example. We now explain how this is made possible
in the two programming languages.

A roughness penalty is defined by constructing a functional parameter object
consisting of:

• a basis object,
• a derivative order m or a differential operator L to be penalized and
• a smoothing parameter λ .

We put these elements together by using the fdPar class in either language, and
the function fdPar to construct an object of that class.

Here are the R commands that set up an order 6 B-spline basis for smoothing the
growth data using a knot at each age, and then define a functional parameter object
that penalizes the roughness of growth acceleration by using the fourth derivative
in the roughness penalty. The smoothing parameter value that we have found works
well is λ = 0.01.

norder = 6
nbasis = length(age) + norder - 2
heightbasis = create.bspline.basis(c(1,18),

nbasis, norder, age)
heightfdPar = fdPar(heightbasis, 4, 0.01)

The data are in array heightmat. In Chapter 4, these data were passed to
smooth.basis with a basis object as the third argument. Here, we will use the
functional parameter object heightfdPar as the third argument:

heightfd = smooth.basis(age, heightmat,
heightfdPar)$fd

Notice that we set up a functional data object heightfd directly by using the
suffix $fd. In Matlab, we would use

heightfd = smooth_basis(age, heightmat, heightfdPar)

5.2.5 Choosing Smoothing Parameter λ

The generalized cross-validation measure GCV developed by Craven and Wahba
(1979) is designed to locate a best value for smoothing parameter λ . The criterion
is

GCV(λ ) =
( n

n−d f (λ )
)( SSE

n−d f (λ )
)

. (5.21)
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Notice that this is a twice-discounted mean squared error measure. The right factor is
the unbiased estimate of error variance σ2 familiar in regression analysis, and thus
represents some discounting by subtracting d f (λ ) from n. The left factor further
discounts this estimate by multiplying by n/(n−d f (λ )).

Figure 5.1 shows how the GCV criterion varies as a function of log10(λ ) for the
entire female Berkeley growth data. Matlab code for generating the plotted values
is

loglam = -6:0.25:0;
gcvsave = zeros(length(loglam),1);
dfsave = gcvsave;
for i=1:length(loglam)
lambdai = 10ˆloglam(i);
hgtfdPari = fdPar(heightbasis, 4, lambdai);
[hgtfdi, dfi, gcvi] =

smooth_basis(age, hgtfmat, hgtfdPari);
gcvsave(i) = sum(gcvi);
dfsave(i) = dfi;

end

The minimizing value of λ is about 10−4, and at that value df(λ ) = 20.2. In fact, the
value λ = 10−4 is rather smaller that the value of 10−2 that we chose to work with
in our definition of the fdPar object in Section 5.2.4, for which df(λ ) = 12.7. We
explain our decision in Section 5.3, and recommend a cautious and considered ap-
proach to choosing the smoothing parameter rather than relying solely on automatic
methods such as GCV minimization.

GCV values often change slowly with log10 λ near the minimizing value, so that
a fairly wide range of λ values may give roughly the same GCV value. This is a sign
that the data are not especially informative about the “true” value of λ . If so, it is
not worth investing a great deal of effort in precisely locating the minimizing value,
and simply plotting GCV over a mesh of log10 λ might be sufficient. Plotting the
function GCV(λ ) in any case will inform us about the curvature of near its minimum.
If the data are not telling us all that much about λ , then it is surely reasonable to
use your judgement in working with values which seem to provide more useful
results that the minimizing value does. Indeed, Chaudhuri and Marron (1999) argue
persuasively for inspecting data smooths over a range of λ values in order to see
what is revealed at each level of smoothing.

However, if a more precise value seems important, the function lambda2gcv
can be used as an argument in an optimization function that will return the minimiz-
ing value.
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Fig. 5.1 The values of the generalized cross-validation or GCV criterion for choosing the smooth-
ing parameter λ for fitting the female growth curves.

5.3 Case Study: The Log Precipitation Data

The fda package for R includes CanadianWeather data, which includes the base 10
logarithms of the average annual precipitation in millimeters (after replacing zeros
with 0.05) for each day of the year at 35 different weather stations. We put these
data in logprecav, shifted to put winter in the middle, so the year begins with
July 1 and ends with June 30:

logprecav = CanadianWeather$dailyAv[
dayOfYearShifted, , ’log10precip’]

Next we set up a saturated fourier basis for the data:

dayrange = c(0,365)
daybasis = create.fourier.basis(dayrange, 365)

We will smooth the data using a harmonic acceleration roughness penalty that penal-
izes departures from a shifted sine, x(t) = c1 + c2 sin(2πt/365)+ c2 cos(2πt/365).
Here we define this penalty. The first command sets up a vector containing the
three coefficients required for the linear differential operator, and the second uses
function vec2Lfd to convert this vector to the linear differential operator object
harmaccelLfd.

Lcoef = c(0,(2*pi/diff(dayrange))ˆ2,0)
harmaccelLfd = vec2Lfd(Lcoef, dayrange)
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Now that we’re set up to do some smoothing, we will want to try a range of
smoothing parameter λ values, and examine the degrees of freedom and values of
the generalized cross–validation coefficient GCV associated with each value of λ .
First we set up a range of values (identified, of course, by some preliminary trial-
and-error experiments). We also set up two vectors to contain the degrees of freedom
and GCV values.

loglam = seq(4,9,0.25)
nlam = length(loglam)
dfsave = rep(NA,nlam)
gcvsave = rep(NA,nlam)

Here are commands that loop through the smoothing values, storing degrees of free-
dom and GCV along the way:

for (ilam in 1:nlam) {
cat(paste(’log10 lambda =’,loglam[ilam],’\n’))
lambda = 10ˆloglam[ilam]
fdParobj = fdPar(daybasis, harmaccelLfd, lambda)
smoothlist = smooth.basis(day.5, logprecav,

fdParobj)
dfsave[ilam] = smoothlist$df
gcvsave[ilam] = sum(smoothlist$gcv)

}

The GCV values have to be summed, since function smooth.basis returns a a
vector of GCV values, one for each replicate.

Figure 5.2 plots the GCV values. This shows a minimum at log10(λ ) = 6. Next we
smooth at this level and add labels to the resulting functional data object. Then we
plot all the log precipitation curves in a single plot, followed by a curve–by–curve
plot of the raw data and the fitted curve.

lambda = 1e6
fdParobj = fdPar(daybasis, harmaccelLfd, lambda)
logprec.fit = smooth.basis(day.5,logprecav,fdParobj)
logprec.fd = logprec.fit$fd
fdnames = list("Day (July 1 to June 30)",

"Weather Station" = CanadianWeather$place,
"Log 10 Precipitation (mm)")

logprec.fd$fdnames = fdnames
plot(logprec.fd)
plotfit.fd(logprecav, day.5, logprec.fd)

This example will be revisited in Chapter 7. There, we will see that the λ =
1e6 leaves some interesting structure in the residuals for a few weather stations.
Moreover, the curvature in the GCV function is rather weak, suggesting we won’t
lose much by using other values of λ in the range of 1e5 to 1e8. Our advice at the
end of Section 5.2.5 seems appropriate here, and perhaps we should have worked
with a lower value of λ .
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Fig. 5.2 The values of the generalized cross-validation or GCV criterion for the log precipitation
data. The roughness penalty was defined by harmonic acceleration.

5.4 Positive, Monotone, Density and Other Constrained
Functions

Often estimated curves must satisfy one or more side constraints. If the data are
counts or other values that cannot be negative, then we do not want negative curve
values, even over regions where values are at or close to zero. If we are estimating
growth curves, it is probably the case that negative slopes are implausible, even if
the noisy measurements do go down here and there. If the data are proportions, it
would not make sense to have curve values outside the interval [0,1].

Unfortunately, linear combinations of basis functions such as those we have been
using up to this point are difficult to constrain in these ways. The solution to the
problem is simple: We transform the problem to one where the curve being esti-
mated is unconstrained. We lose simple closed form expressions for the smoothing
curve and therefore must resort to iterative methods for calculating the transformed
curve, but the price is well worth paying.

5.4.1 Positive Smoothing

This transformation strategy is easiest to see in the case of positive (or negative)
curves. We express the smoothing problem (5.3) as the transformed problem
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y j = exp[w(t j)]+ ε j = exp[φ(t j)′c]+ ε. (5.22)

That is, function w(t) is now the logarithm of the data-fitting function x(t) =
exp[w(t)], and consequently is unconstrained as to its sign, while at the same time
the fitting function is guaranteed to be positive. It can go as close to zero as we like
by permitting the values of w(t) to be arbitrarily large negative numbers.

For example, we can smooth Vancouver’s mean daily precipitation data, which
can have zero but not negative values, using these commands using the function
smooth.pos in R or smooth pos in Matlab:

lambda = 1e3
WfdParobj = fdPar(daybasis, harmaccelLfd, lambda)
VanPrec = CanadianWeather$dailyAv[
dayOfYearShifted, ’Vancouver’, ’Precipitation.mm’]

VanPrecPos = smooth.pos(day.5, VanPrec, WfdParobj)
Wfd = VanPrecPos$Wfdobj

These commands plot Wfd, the estimated log precipitation.

Wfd$fdnames = list("Day (July 1 to June 30)",
"Weather Station" = CanadianWeather$place,

"Log 10 Precipitation (mm)")
plot(Wfd)

The fit to the data, shown in Figure 5.3, is displayed by

precfit = exp(eval.fd(day.5, Wfd))
plot(day.5, VanPrec, type="p", cex=1.2,

xlab="Day (July 1 to June 30)",
ylab="Millimeters",
main="Vancouver’s Precipitation")

lines(day.5, precfit,lwd=2)

5.4.2 Monotone Smoothing

Some applications require a fitting function x(t) that is either monotonically increas-
ing or decreasing, even though the observations may not exhibit perfect monotonic-
ity:

y j = β0 +β1x(t j)+ ε j (5.23)

We can get this easily by letting

x(t) =
∫ t

t0
exp[w(u)]du (5.24)

Here t0 is the fixed origin for the range of t-values for which the data are being
fit. The intercept term β0 in (5.23) is the value of the approximating function at t0.
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Fig. 5.3 Vancouver’s precipitation data, along with a fit estimated by positive smoothing.

For monotonically increasing functions, β1 could be absorbed into w(u). However,
to allow for monotonically decreasing functions, we keep β1 separate and select
normalize w(u) for numerical stability.

Substituting (5.24) into (5.23) produces the following:

y j = β0 +β1

∫ t j

t0
exp[w(u)]du+ ε j = β0 +β1

∫ t j

t0
exp[φ(u)′c]du+ ε j. (5.25)

The function smooth.monotone estimates β0, β1, and w(u).
Figure 5.4 shows the length of the tibia of a newborn infant, measured by Dr.

Michael Hermanussen with an error of the order of 0.1 millimeters, over its first
forty days. The staircase nature of growth in this early period and need to estimate
the velocity of change in bone length, also shown in the figure, makes monotone
smoothing essential. It seems astonishing that this small bone in the baby’s lower
leg has the capacity to grow as much as two millimeters in a single day.

Variables day and tib in the following code contain the numbers of the days
and the measurements, respectively. A basis for function w and a smoothing profile
are set up, the data are smoothed, the values of the functional data object for w
and the coefficients β0 and β1 are returned. Then the values of the smoothing and
velocity curves are computed.

Wbasis = create.bspline.basis(c(1,n), 42)
Wfd0 = fd(matrix(0,nbasis,1), Wbasis)
WfdPar = fdPar(Wfd0, 2, 1e-4)
result = smooth.monotone(day, tib, WfdPar)
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Fig. 5.4 The left panel shows measurements of the length of the tibia of a newborn infant over its
first forty days, along with a monotone smooth of these day. The right panel shows the velocity or
first derivative of the smoothing function.

Wfd = result$Wfd
beta = result$beta
dayfine = seq(1,n,len=151)
tibhat = beta[1] + beta[2]*eval.monfd(dayfine ,Wfd)
Dtibhat = beta[2]*eval.monfd(dayfine, Wfd, 1)
D2tibhat = beta[2]*eval.monfd(dayfine, Wfd, 2)

5.4.3 Probability Density Functions

A probability density function p(z) is used to indicate the probability of observing a
scalar observation at or near a value z, and is one of the core functions in statistics.
From our perspective, p is a special case of a positive function in the sense of having
a unit integral over the range of z. That is, we can express p as

p(z) = C exp[w(z)], (5.26)

where the positive normalizing constant C satisfies the constrain
∫

p(z)dz = 1. Es-
timating a free-form nonparametric version of p is not a smoothing problem as we
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have so far defined it, since we wouldn’t use an error sum of squares measure of
lack of fit. Rather, the usual practice would be to minimize a penalized negative log
likelihood,

− lnL(c) =−
N

∑
i

ln p(zi)+λ
∫

[Lw(z)]2dz =−
N

∑
i

w(zi)−N lnC +λ
∫

[Lw(z)]2dz,

(5.27)
where w(z) = c′φ(z). Notice that the first two terms replace the error sum of squares
in (5.13).

The linear differential operator L can be chosen so as to force p to approach
specific parametric density functions as λ → ∞. For example, L = D3 will do this
for the Gaussian density (Silverman, 1986).

Function density.fd is used to estimate a nonparametric probability density
function from a sample of data. We will illustrate its use for a rather challenging
problem: describing the variation in daily precipitation for the Canadian prairie city
of Regina over the month of June and over the 34 years from 1960 to 1994. June is
the critical month for wheat growers because the crop enters its most rapid growing
phase, and an adequate supply of moisture in the soil is essential for a good crop.

Precipitation is a difficult quantity to model for several reasons. First of all, on
about 65% of the days in this region, no rain is even possible, so that zero really
means a “non-precipitation day” rather than “no rain.” Since there can be a small
amount of precipitation from dew, we used only days when the measured precip-
itation exceeded two millimetres. Also, precipitation can come down in two main
ways: as a gentle drizzle, and, more often, as a sudden and sometimes violent thun-
derstorm. Consequently, the distribution of precipitation is extremely skewed, and
Regina experienced three days in this period with more than 40 mm of rain. We
deleted these days, too, in order to improve the graphical displays, leaving N = 212
rainfall values.

Figure 5.5 plots the ordered rainfalls for all 1006 of these days against their rank
orders, a version of a quantile plot. We can see just how extreme precipitation can
be; the highest rainfall of 132.6 mm. on June 25, 1975, is said to have flooded 20,000
basements.

We set up the break points for a cubic B-spline basis to be the rainfalls at 11
equally spaced ranks, beginning at the first and ending at N. In this code variable Z
contains the 212 sorted rainfall amounts that we selected.

Wknots = Z[round(N*seq(1/N,1,len=11),0)]
Wnbasis = length(Wknots) + 2
Wbasis = create.bspline.basis(range(Z),13,4,Wknots)

Now we estimate the density, applying a light amount of smoothing, and extract
the functional data object Wfd and the normalizing constant C from the list that
density.fd returns.

Wlambda = 1e-1
WfdPar = fdPar(Wbasis, 2, Wlambda)
densityList = density.fd(Z, WfdPar)
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Fig. 5.5 The empirical quantile function for daily rainfall at Regina in the month of June over 34
years.

Wfd = densityList$Wfdobj
C = densityList$C

These commands set up the density function values over a fine mesh of values.

Zfine = seq(Z[1],Z[N],len=201)
Wfine = eval.fd(Zfine, Wfd)
Pfine = exp(Wfine)/C

The estimated density is shown in Figure 5.6. The multi-phase nature of precip-
itation is clear here. The first phase is due to heavy dew or a few drops of rain,
followed by a peak related to light rain from low pressure ridges that arrive in this
area from time to time, and then thunderstorm rain that can vary from about 7 mm
to catastrophic levels.

5.5 Assessing the Fit to the Data

Having smoothed the data, there are many questions to ask, and these direct us to
do some further analyses of the residuals, ri j = yi j − xi(t j). These analyses can be
functional since there is some reason to suppose that at least part of the variation in
these residuals across t is smooth.

Did we miss some important features in the data by over-smoothing? Perhaps,
for example, there may have been something unusual in one or two curves that we
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Fig. 5.6 The solid line indicates the probability density function p(z) for rainfall in Regina of 2
mm or greater, but stopping at about 45 mm. The vertical dashed lines indicate the knot values
used to define the cubic B-spline expansion for w = ln p.

missed because the GCV criterion selected a level of smoothing that worked best
for all samples simultaneously. Put another way, could there be an indication that
we might have done better to smooth each weather station’s log precipitation data
separately? We will defer looking at this question until the end of the next chapter,
since principal components analysis can be helpful here.

A closely related question concerns whether the variation in the residuals con-
forms to the assumptions implicit in the type of smoothing that we performed. The
use of the unweighted least squares criterion is only optimal if the residuals for all
time points are normally distributed, and if the variance of these residuals is constant
across both years and weather stations (curves).

We now return to the log precipitation data considered in Section 5.3 and create a
365 by 35 matrix of residuals from the fit discussed there. We then use this to create
variance vectors across

• stations, of length 365, dividing by 35 since the residuals needn’t sum to zero on
any day,

• time, of length 35, dividing by 365-12; the number ’12’ here is essentially the
equivalent degrees of freedom in the fit (logprec.fit$df).

logprecmat = eval.fd(day.5, logprec.fd)
logprecres = logprecav - logprecmat
# across stations
logprecvar1 = apply(logprecresˆ2, 1, sum)/35
# across time
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logprecvar2 = apply(logprecresˆ2, 2, sum)/(365-12)

Let’s look at how residual variation changes over stations; Figure 5.7 displays
their standard deviations. With labels on a few well-known stations and recalling
that we number the stations from east to west to north, we see that there tends to be
more variation for prairie and northerly stations in the center of the country, and less
for marine stations. This is interesting but perhaps not dramatic enough to make us
want to pursue the matter further.
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Fig. 5.7 Standard deviations of the residuals from the smooth of the log precipitation taken across
days and within stations.

Figure 5.8 shows how standard deviations taken over stations and within days
vary. The smooth line in the plot was computed by smoothing the log of the standard
deviations and exponentiating the result by these two commands:

logstddev.fd = smooth.basis(day.5,
log(logprecvar1)/2, fdParobj)$fd

logprecvar1fit = exp(eval.fd(day.5, logstddev.fd))

We could also have used smooth.pos to do the job. We see now that there is a
seasonal variation in the size of the residuals, with more variation in summer months
than in winter. Nevertheless, this form of variation is not strong enough to justify
returning to do a weighted least squares analysis using smooth.basis; we would
need much larger variations in the variability for it to create a substantive difference
between weighted and unweighted solutions.

Also implicit in our smoothing technology is the assumption that residuals are
uncorrelated. This is a rather unlikely situation; departures from smooth variation
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Fig. 5.8 Standard deviations of the residuals from the smooth of the log precipitation taken across
stations and within days. The solid line is an exponentiated smooth of the log of the variances.

tend also to be smooth, implying a strong positive autocorrelation between neigh-
boring residuals. If observation times are equally spaced, we can use standard time
series techniques to explore this autocorrelation structure.

5.6 Details for the fdPar Class and smooth.basis Function

5.6.1 The fdPar class

We give here is the arguments of the constructor function fdPar that constructs an
object of the functional parameter fdPar class. The complete calling sequence is

fdPar(fdobj=NULL, Lfdobj=NULL, lambda=0,
estimate=TRUE, penmat=NULL)

The arguments are as follows:

fdobj a functional data object, functional basis object, a functional parameter
object or a matrix. If it a matrix, it is replaced by fd(fdobj). If
class(fdobj) == ’basisfd’, it is converted to an object of class fd
with a coefficient matrix consisting of a single column of zeros.

Lfdobj either a nonnegative integer or a linear differential operator object. If
NULL, Lfdobj depends on fdobj[[’basis’]][[’type’]]:
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bspline Lfdobj = int2Lfd(max(0, norder-2)), where
norder = norder(fdobj).

fourier Lfdobj is a harmonic acceleration operator set up for the period
used to define the basis.

anything else Lfdobj <- int2Lfd(0)

lambda a nonnegative real number specifying the amount of smoothing to be
applied to the estimated functional parameter.

estimate not currently used.
penmat a roughness penalty matrix. Including this can eliminate the need to

compute this matrix over and over again in some types of calculations.

5.6.2 The smooth.basis Function

The calling sequence for smooth.basis is

smooth.basis(argvals, y, fdParobj,
wtvec=rep(1, length(argvals)),
fdnames=NULL)

The arguments are as follows:

argvals a vector of argument values correspond to the observations in array y.
y an array containing values of curves at a finite number of sampling points or

argument values. If the array is a matrix, the rows must correspond to argument
values and columns to replications, and it will be assumed that there is only one
variable per observation. If y is a three-dimensional array, the first dimension cor-
responds to argument values, the second to replications, and the third to variables
within replications. If y is a vector, only one replicate and variable are assumed.

fdParobj a functional parameter object, a functional data object or a functional
basis object. If the object is a functional parameter object, then the linear dif-
ferential operator object and the smoothing parameter in this object define the
roughness penalty. If the object is a functional data object, the basis within this
object is used without a roughness penalty, and this is also the case if the object
is a functional basis object.

wtvec a vector of the same length as argvals containing weights for the val-
ues to be smoothed.

fdnames a list of length 3 containing character vectors of names for the follow-
ing:

args name for each observation or point in time at which data are collected.
reps name for each rep, unit or subject.
fun name for each function or (response) variable measured repeatedly (per
args) for each rep.



78 5 Smoothing: Computing Curves from Noisy Data

Function smooth.basis returns an argument of the fdSmooth class, which
is a named list of length 8 with the following components:

fd a functional data object containing a smooth of the data.
df a degrees of freedom measure of the smooth
gcv the value of the generalized cross-validation or GCV criterion. If there are

multiple curves, this is a vector of values, one per curve. If the smooth is mul-
tivariate, the result is a matrix of GCV values, with columns corresponding to
variables.

SSE the error sums of squares. SSE is a vector or a matrix of the same size as
gcv.

penmat the penalty matrix.
y2cMap the matrix mapping the data to the coefficients.
argvals, y input arguments

5.7 Some Things to Try

1. In order to understand the implications of choice of smoothing parameter λ , it’s
best to work with simulated data.

a. Choose a function with some interesting variation, such as
• sin(4πt) over [0,1]
• exp(−t2/2) over [-5,5]

b. Specifying some sampling points t j, j = 1, . . . ,n, evaluate your function at
these points, and add some mean 0 normal random error to these values, where
you specify the standard deviation.

c. Specify a basis system, an order of derivative to penalize, and a value smooth-
ing parameter λ , and bundle these together in an fdPar object.

d. Smooth the points using function smooth.basis (R) or smooth basis
(Matlab).

e. Compute the square root of the mean square error, and compare this to the
standard deviation that you used to generate the error. You might want to
subtract the equivalent degrees of freedom associated with the λ value that
you used from n before dividing the sum of squared errors.

f. Experiment with different values of λ , and find one that gives nearly the right
value for root mean squared error.

g. Experiment with different values of λ , and save the GCV values for each.
Plot these GCV values against log10(λ ), and estimate by eye the value of λ
minimizing GCV.

2. Now try your hand at smoothing some real data, such as what you used in the
exercises in Chapter 1.

3. Calculate the derivative of the function you used to generate the data in 1a. How
does the derivative of your smooth compare with this? Does some value for λ
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other than that given by GCV improve the agreement between estimated and true
derivatives?

4. Melanoma Data The melanoma data set in the fda package for R contains
age-adjusted incidences of melanoma from the Connecticut Tumor Registry for
the years 1935 to 1972.

a. Fit these data with a Fourier basis, choosing the number of basis functions by
minimizing the gcv value returned by smooth.basis.

b. Try removing a linear trend for these data first, either directly, or by looking
at the residuals after a call to lm. Repeat the steps above; does the optimal
number of basis functions change?

c. Re-fit the data using a B-spline basis and a harmonic acceleration penalty. Try
some values of λ to optimize gcv. You will need to guess at the period to use;
how does doubling and halving the period change the degrees of freedom at
the optimal value of λ?

d. Set up the linear differential operator ω2D2 +D4, which annihilates sinusoidal
combined with linear trend. Smooth the melanoma data using this operator.

e. Plot the velocity versus acceleration curves for the fit using a Fourier basis
and using the B-spline basis with a harmonic acceleration penalty. Are they
substantially different? Do they provide evidence of sub-cycles?

5.8 More to Read

There is a large literature on smoothing methods, and Ramsay and Silverman (2005)
devote a number of chapters to the problem. Recent book length references are Eu-
bank (1999), Ruppert, Wand and Carroll (2003) and Simonoff (1996). Moreover,
there are smoothing methods that do not define x in explicitly terms of basis func-
tions that may serve as well, such as local polynomial smoothing. However, the
well-known method of kernel smoothing, made all too available in software pack-
ages, should now be viewed as obsolete because its poor performance near the end
points of the interval Fan and Gijbels (1996).





Chapter 6
Descriptions of Functional Data

This chapter and the next are the exploratory data analysis end of functional data
analysis. Here we recast the concepts of mean, standard deviation, covariance and
correlation into functional terms and provide R and Matlab functions for computing
and viewing them.

Exploratory tools are often the most fruitful when applied to residual variation
around some model, where we often see surprising effects once we have removed
relatively predictable structures from the data. Summary descriptions of residual
variation are also essential for estimating confidence regions.

Contrasts are often used in analysis of variance to explore pre-specified patterns
of variation. We introduce the more general concept of a functional probe as a means
of looking for specific patterns or shapes of variation in functional data, and provides
methods for estimating confidence limits for estimated probe values.

The phase-plane plot has turned out to be a powerful tool for exploring data for
harmonic variation, even in data on processes such as human growth where we do
not ordinarily think of cyclic variation as of much interest. In fact, the phase-plane
plot, developed in detail in this Chapter, is precursor to the dynamic equations that
we will explore in Chapter 11 since it essentially a graphical analogue of a second
order linear differential equation.

6.1 Some Functional Descriptive Statistics

Let xi, i = 1, . . . ,N, be a sample of curves or functions fit to data. The univariate
summaries, the sample mean and variance functions, are as follows:

x̄(t) = N−1 ∑
i

xi(t) and s(t) = (N−1)−1 ∑
i
[xi(t)− x̄(t)]2,

These can be computed for the log-precipitation data considered in Section 5.3 as
follows:

81
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These are computed, in the case of the log-precipitation data considered in Sec-
tion 5.3, as follows:

meanlogprec = mean(logprec.fd)
stddevlogprec = std.fd(logprec.fd)

As always in statistics, choices of descriptive measures like the mean and variance
should never be automatic or uncritical. The distribution of precipitation is strongly
skewed, and by logging these data, we effectively work with the geometric mean of
precipitation as a more appropriate measure of location in the presence of substantial
skewness.

Beyond this specific application, the functional standard deviation focuses on
the intrinsic variability between observations, e.g, Canadian weather stations, after
removing variations that are believed to represent measurement and replication error
not attributable to the variability between observations. A proper interpretation of
the analyses of this section require an understanding of exactly what we mean by
std.fd and what is discarded in smoothing.

6.1.1 The Bivariate Covariance Function v(s, t)

As we indicated in Chapter 1, the correlation coefficient as a measure of association
between two functional observations xi(s) and xi(t) on the same quantity or metric
is often less useful than the simpler covariance coefficient, because they share the
same measurement scales. Where we want to quantify the association between two
functions x and y having different measurement scales, the correlation will still be
useful.

The bivariate covariance function σ(s, t) specifies the covariance between curve
values xi(s) and xi(t) at times s and t, respectively. It is estimated by

v(s, t) = (N−1)−1 ∑
i
[xi(s)− x̄(s)][xi(t)− x̄(t)]. (6.1)

For the log-precipitation data the R command is

logprecvar.bifd = var.fd(logprec.fd)

The result of this command is a bivariate functional data object having two argu-
ments. If we want to look at the variance-covariance surface, these commands in
Matlab will do the job:

logprecvar_bifd = var_fd(logprec_fd);
weektime = linspace(0,365,53);
logprecvar_mat = eval_bifd(weektime, weektime,

logprecvar_bifd);
surf(weektime, weektime, logprecvar_mat);
contour(weektime, weektime, logprecvar_mat);
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The following will do essentially the same thing in R:

weektime = seq(0,365,length=53)
logprecvar_mat = eval.bifd(weektime, weektime,

logprecvar.bifd)
persp(weektime, weektime, logprecvar_mat,

theta=-45, phi=25, r=3, expand = 0.5,
ticktype=’detailed’,
xlab="Day (July 1 to June 30)",
ylab="Day (July 1 to June 30)",
zlab="variance(log10 precip)")

contour(weektime, weektime, logprecvar_mat)

In our experience, contour and 3-D surface or perspective plots complement each
other in the information that they convey, and both are worth doing. Surface plots
draw our eye to global shape features, but we need contour plots to locate these
features on the argument plane.

Function var.fd may also be used to compute the cross-covariance be-
tween two sets of curves by being called with two arguments, such as in

tempprecbifd = var.fd(tempfd, logprec.fd)

If the cross-correlation surface is needed, however, we would use the function
cor.fd or its Matlab counterpart cor fd.

The variance of the log precipitation functions is seen in Figure 6.1 as the height
of the diagonal running from (0,0) to (365,365). There is much more variation in
precipitation in the winter months, positioned in this plot in the middle of the sur-
face, because the frigid atmosphere near polar stations like Resolute has almost no
capacity to carry moisture, while marine stations like Prince Rupert are good for a
soaking all year round. One is struck by the topographical simplicity of this partic-
ular surface, and we will understand this better in the next section.

The R commands

day5time = seq(0,365,5)
logprec.varmat = eval.bifd(day5time, day5time,

logprecvar.bifd)
contour(day5time, day5time, logprec.varmat,

xlab="Day (July 1 to June 30)",
ylab="Day (July 1 to June 30)", lwd=2,
labcex=1)

return the contour plot of the variance surface shown in Figure 6.2. We see that
variance across weather stations is about five times as large in the winter than it is
in the summer. The action is in winter in Canada!

The documentation for the surf and contour functions in Matlab describe
enhancements over the images visible in Figures 6.1 and 6.2. With R, other per-
spective and contour functions are available in the lattice (Sarkar, 2008) and
rgl (Adler and Murcoch, 2009) packages. In particular, the lattice package is
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Fig. 6.1 The estimated variance-covariance surface v(s, t) for the log precipitation data.
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Fig. 6.2 A contour plot of the bivariate variance-covariance surface for the log precipitation data.
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useful for high dimensional graphics, showing, e.g., how the relationship displayed
in Figures 6.1 and 6.2 vary with region of the country. The rgl package provides
interactive control over perspective plots.

6.2 The Residual Variance-Covariance Matrix Σe

We considered the question of how the residuals ri j = yi j− xi(t j) behave in Section
5.5, and we will return to this question in Chapters 7 and 8. But in the meantime we
will need the conditional covariance matrix or residual covariance matrix describ-
ing the covariance of the residuals ri j at argvals t j, j = 1, ...,n. This is an order n
symmetric matrix Σe. Here the term conditional means the variation in the yi j’s left
unexplained by a smooth curve or by the use of some other model for the data. We
will use this matrix for computing confidence limits for curves and other values.

Unless a large number of replications of curves are available, as is the case for
the growth data, we have to restrict our aims to estimating fairly gross structure
in the residuals. In particular, it is often assumed that neighboring residuals are
uncorrelated, and one only attempts to estimate the standard deviation or variance
of the residuals across curves. Figure 5.8 offers a picture of this variation for the log
precipitation data. Under this assumption, the order n symmetric matrix Σe will be
diagonal, and will contain values in the vector logprecvar1 computed in Section
5.5.

We will consider ways of extracting more information Σe in Chapter 7.

6.3 Functional Probes ρξ

Purely descriptive methods such as displaying mean and variance functions allow
us to survey functional variation without having to bring any preconceptions about
exactly what kind of variation might be important. This is fine as far as it goes, but
functions and their derivatives are potentially complex structures with a huge scope
for surprises, and we may need to “zoom in” on certain curve features.

Moreover, our experience suggests that a researcher seldom approaches func-
tional data without some fairly developed sense of what will be seen. We would be
surprised if we didn’t see the pubertal growth spurt in growth curves, or sinusoidal
variation in temperature profiles. When we have such structure in mind, we typically
need to do two things: check the data to be sure that what we expect is really there,
and then do something clever to look around and beyond what we expect in order
to view the unexpected. Chapter 7 is mainly about looking for the dominant modes
of variation and covariation, but the tools that we develop there can also be used to
highlight interesting but more subtle features.

A probe ρξ is a tool for highlighting specific variation. Probes are variably
weighted linear combinations of function values. Let ξ be weight function that we
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apply to a function x as follows:

ρξ (x) =
∫

ξ (t)x(t)dt (6.2)

If ξ has been structured so as to be a template for a specific feature or pattern of
variation in x, then the resulting probe value ρξ (x) will be substantially far from
zero. The term contrast in experimental design or linear models has much the same
meaning as probe, but there is no particular need for probe functions to integrate to
zero.

The value of a probe function is computing using the inprod function. Sup-
pose xifd and xfd are two functional data objects for the weight function ξ and
observed curve x, respectively. The probe value probeval is computed by the
command

probeval = inprod(xifd, xfd)

The integration in this calculation can be done to within machine precision in many
cases, or otherwise is computed by a numerical approximation method.

Probe weight functions ξ may also be estimated from the data rather than chosen
a priori, and the two methods treated in Chapter 7, principal components analysis
and canonical correlation analysis, are designed to estimate probes empirically that
highlight large sources of variation or covariation.

6.4 Phase-plane Plots of Periodic Effects

The two concepts of energy and of functional data having variation on more than one
time scale lead to the graphical technique of plotting one derivative against another,
something that we will call phase-plane plotting. We saw an example in Figure 1.15
for displaying the dynamics in human growth.

We now return to the U.S. nondurable goods manufacturing index, plotted in
Figures 1.3 and 1.4, to illustrate these ideas. A closer look at a comparatively sta-
ble period, 1964 to 1967 shown in Figure 6.3, suggests that the index varies fairly
smoothly and regularly within each year. The solid line is a smooth of these data
using the roughness penalty method described in Chapter 5. We now see that the
variation within this year is more complex than Figure 1.4 can possibly reveal. This
curve oscillates three times during the year, with the size of the oscillation being
smallest in spring, larger in the summer, and largest in the autumn. In fact each year
shows smooth variation with a similar amount of detail, and we now consider how
we can explore these within-year patterns.
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Fig. 6.3 The log nondurable goods index for 1964 to 1967, a period of comparative stability. The
solid line is a fit to the data using a polynomial smoothing spline. The circles indicate the value of
the log index at the first of the month.

6.4.1 Phase-plane Plots Show Energy Transfer

Now that we have derivatives at our disposal, we can learn new things by studying
how derivatives relate to each other. Our tool is the plot of acceleration against ve-
locity. To see how this might be useful, consider the phase-plane plot of the function
sin(2πt), shown in Figure 6.4. This simple function describes a basic harmonic pro-
cess, such as the vertical position of the end of a suspended spring bouncing with a
period of one time unit.

Springs and pendulums oscillate because energy is exchanged between two
states: potential and kinetic. At times π,3π, . . . the spring is at one or the other
end of its trajectory, and the restorative force due to its stretching has brought it
to a standstill. At that point, its potential energy is maximized, and so is the force,
which is acting either upward (positively) or downward. Since force is proportional
to acceleration, the second derivative of the spring position,−(2π)2 sin(2πt), is also
at its highest absolute value, in this case about ±40. On the other hand, when the
spring is passing through the position 0, its velocity, 2π cos(2πt), is at its greatest,
about ±8, but its acceleration is zero. Since kinetic energy is proportional to the
square of velocity, this is the point of highest kinetic energy. The phase-plane plot
shows this energy exchange nicely, with potential energy being maximized at the
extremes of Y and kinetic energy at the extremes of X .
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Fig. 6.4 A phase-plane plot of the simple harmonic function sin(2πt). Kinetic energy is maximized
when acceleration is 0, and potential energy is maximized when velocity is 0.

The amount of energy in the system is related to the width and height of the
ellipse in Figure 6.4; the larger it is, the more energy the system exhibits, whether
in potential or kinetic form.

6.4.2 The Nondurable Goods Cycles

Harmonic processes and energy exchange are found in many situations besides me-
chanics. In economics, potential energy corresponds to resources including capital,
human resources, and raw material that are available to bring about some economic
activity. This energy exchange can be evaluated for nondurable goods manufactur-
ing as displayed in Figure 6.3. Kinetic energy corresponds to the manufacturing
process in full swing, when these resources are moving along the assembly line, and
the goods are being shipped out the factory door.

We use the phase-plane plot, therefore, to study the energy transfer within the
economic system. We can examine the cycle within individual years, and also see
more clearly how the structure of the transfer has changed throughout the twentieth
century. Figure 6.5 presents a phase-plane plot for 1964, a year in a relatively stable
period for the index. To read the plot, find “jan” in the middle right of the plot, and
move around the diagram clockwise, noting the letters indicating the months as you
go. You will see that there are two large cycles surrounding zero, plus some small
cycles that are much closer to the origin.
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Fig. 6.5 A phase-plane plot of the first derivative or velocity and the second derivative or acceler-
ation of the smoothed log nondurable goods index for 1964. Mid-months are indicated by the first
letters or short abbreviations.

The largest cycle begins in mid-May (M), with positive velocity but near zero
acceleration. Production is increasing linearly or steadily at this point. The cycle
moves clockwise through June (“Jun”) and passes the horizontal zero acceleration
line at the end of the month, when production is now decreasing linearly. By mid-
July (“Jly”) kinetic energy or velocity is near zero because vacation season is in full
swing. But potential energy or acceleration is high, and production returns to the
positive kinetic/zero potential phase in early August (“Aug”), and finally concludes
with a cusp at summer’s end (S). At this point the process looks like it has run out
of both potential and kinetic energy.

The cusp, near where both derivatives are zero, corresponds to the start of school
in September, and to the beginning of the next big production cycle passing through
the autumn months of October through November. Again this large cycle terminates
in a small cycle with little potential and kinetic energy. This takes up the months of
February and March (F and mar). The tiny subcycle during April and May seems to
be due to the spring holidays, since the summer and fall cycles, as well as the cusp,
don’t change much over the next two years, but the spring cycle cusp moves around,
reflecting the variability in the timings of Easter and Passover.

To summarize, the production year in the 1960s has two large cycles swinging
widely around zero, each terminating in a small cusp–like cycle. This suggests that
each large cycle is like a balloon that runs out of air, the first at the beginning of
school, and the second at the end of winter. At the end of each cycle, it may be that
new resources must be marshalled before the next production cycle can begin.
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6.4.3 Phase-Plane Plotting the Growth of Girls

Here are the commands in Matlab used to produce Figure 1.15. They use a func-
tional data object hgtfmonfd that contains the 54 curves for the Berkeley girls
estimated by monotone smoothing. Velocities and accelerations are first evaluated
over a fine mesh of ages for the first ten girls using the eval fd function. Then
all 10 phase-plane plots are produced, followed by plots of the 6th girl’s curve as a
heavy dashed line, and of circles positioned at the age 11.7 for each girl. Labels and
axis limits are added at the end.

agefine = linspace(1,18,101);
velffine = eval_fd(agefine, hgtfmonfd(1:10), 1);
accffine = eval_fd(agefine, hgtfmonfd(1:10), 2);
phdl = plot(velffine, accffine, ’k-’, ...

[1,18], [0,0], ’k:’);
set(phdl, ’LineWidth’, 1)
hold on
phdl = plot(velffine(:,6), accffine(:,6), ...

’k--’, [0,12], [0,0], ’k:’);
set(phdl, ’LineWidth’, 2)
phdl=plot(velffine(64,index), accffine(64,index), ...

’ko’);
set(phdl, ’LineWidth’, 2)
hold off
xlabel(’\fontsize{13} Velocity (cm/yr)’)
ylabel(’\fontsize{13} Acceleration (cm/yrˆ2)’)
axis([0,12,-5,2])

What we see is that girls with early pubertal growth spurts, having marker circles
near the end of their trajectories, have intense spurts, indicated by the size of their
loops. Late-spurt girls have tiny loops. The net effect is that the adult height of girls
is not much affected by the timing of the growth spurt, since girls with late spurts
have the advantage of a couple of extra years of growth, but the disadvantage of a
weak spurt. A hint of the complexity of growth dynamics in infancy is given by the
two girls whose curves come from the right rather than from the bottom of the plot.

6.5 Confidence Intervals for Curves and their Derivatives

We now want to see how to compute confidence limits on some useful quantities that
depend on an estimated function x that has, in turn, been computed by smoothing
with a roughness penalty a data vector y.

For example, how precisely is the function value at t, x(t), determined by our
sample of data y? Or, what sampling standard deviation can we expect if we re-
sample the data over and over again, estimating x(t) anew with each sample? Can
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we construct a pair of confidence limits such that the probability that the true value of
x(t) lies within these limits is a specified value, such as 0.95? Displaying functions
or their derivatives with point-wise confidence limits is a useful way of conveying
how much information there is in the data used to estimate these functions. See
Figure 6.6 below for an example.

More generally, confidence regions are often required for the values of linear
probes ρξ defined in (6.2), of which x(t) and Dmx(t) are specific examples.

6.5.1 Two Linear mappings Defining a Probe Value

In order to study the sampling behavior of ρξ , we need to compute two linear map-
pings plus their composite. They are given names and described as follows:

1. Mapping y2cMap, which converts the raw data vector y to the coefficient vector
c of the basis function expansion of x. If y and c have lengths n and K, respec-
tively, this mapping is a K by n matrix y2cMap such that

c = y2cMap y

where the K by n matrix y2cMap was defined in Chapter 5 by either (5.5) or
(5.17).

2. Mapping c2rMap, which converts the coefficient vector c to the scalar quantity
ρξ (x). This mapping is a 1 by K row vector L such that

ρξ (x) = Lc = c2rMap c.

3. The composite mapping called y2rMap defined by

y2rMap= ρξ (x) = c2rMap y2cMap,

which converts a data vector y directly into the probe value; this is a 1 by n row
vector.

How is L = c2rMap actually calculated? In general, the computation includes
the use of the all-important inner product function inprod to compute the integral
(6.2). This function is working away behind the scenes in almost every functional
data analysis. It evaluates the integral of the product of two functions, or the matrices
defined by products of sets of functions, such as that defining the roughness penalty
matrix R =

∫
LφLφ ′ defined in Subsection 5.2.2. Where possible, this function uses

an analytic expression for these integral values. However, more often than not, this
computation requires numerical approximation.

The four important arguments to function inprod are as follows:

fdobj1 either a functional data object or a functional basis object
fdobj2 also either a functional data object or a functional basis object. It is the

integral of the products of these two objects that is computed. If either of these
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first two arguments are a basis object, it is converted to a functional data object
with an identity matrix as its coefficient matrix.

Lfdobj1 a linear differential operator object of class Lfd to be applied to
fdobj1. If missing, the result of applying it is taken to be the function itself,
that is, it is the identity operator.

Lfdobj2 also a linear differential operator object of class Lfd to be applied to
fdobj2.

For the problem of computing c2rMap, one of the first two arguments would be
a functional data object for the weight function ξ and other would be the functional
basis object used in the expansion of function x.

As an illustration, consider a conventional linear regression model with design
matrix Z

y = Zc+ e,

where the regression coefficient vector c is estimated by ordinary least squares.
Then, since c =(Z′Z)−1Z′y, the matrix corresponding to y2cMap is S =(Z′Z)−1Z′.
Now suppose that for some reason we want to estimate the difference between the
first and second regression coefficients, possibly because we conjecture that they
may be equal in the population. Then the probe function ξ is equivalent to the
probe vector L = (1,−1,0, . . .), and this is the row vector corresponding to map-
ping c2rMap. Finally, the composite mapping y2rMap taking y directly into the
value of this difference is simply the row vector L(Z′Z)−1Z′.

For a more complicated example, suppose that we want to compare winter tem-
peratures and precipitations for the 35 Canadian weather stations, and we have al-
ready defined basis objects tempbasis and precbasis, respectively. Suppose,
too, that we have run the year from July 1 to June 30, so that winter is in the middle
of the year. We can use as a probe function

ξ (t) = exp{20cos[2∗π(t−197)/365]},

which is proportional to the density for the von Mises distribution of data on a cir-
cle, and where the concentration parameter value 20 weights substantially about two
months and the location value 197 centers the weighting on approximately January
15 (see (Fisher et al., 1987) for more details.) The following code sets up the func-
tional data object for ξ and then carries out the two integrations required for the two
sets of 35 probe values produced by integrating the product of ξ with each of the
basis functions in each of the two systems.

dayvec = seq(0,365,len=101)
xivec = exp(20*cos(2*pi*(dayvec-197)/365))
xibasis = create.bspline.basis(c(0,365),13)
xifd = smooth.basis(dayvec, xivec, xibasis)$fd
tempLmat = inprod(tempbasis, xifd)
precLmat = inprod(precbasis, xifd)

The random behavior of the estimator of whatever we choose to estimate is ul-
timately tied to the random behavior of the data vector y. Let us indicate the order
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n variance-covariance matrix of y as Var(y) = Σ e. Recall that we are operating in
this chapter with the model

y = x(t)+ ε ,

where x(t) here means the n-vector of values of x at the n argument values t j. In this
model x(t) is regarded as fixed, and as a consequence Σ e = Var(ε).

6.5.2 Computing Confidence Limits for Probe Values

We compute confidence limits in this book by a rather classic method: The covari-
ance matrix Σξ of ξ = Ay is

Σξ = AΣyA′ (6.3)

If the residuals from a smooth of the data have a variance-covariance matrix Σe,
then we see from ĉ =y2cMap y that the coefficients will have a variance-covariance
matrix

Σc = y2cMap Σe y2cMap
′

We use the conditional variance of the residuals in this equation because we are
only interested in the uncertainty in our estimate of c that comes from unexplained
variation in y after we have explained what we can with our smoothing process. This
in turn estimates the random variability in our estimate of the smooth.

We apply (6.3) a second time to get the variance-covariance matrix Σξ for a
functional probe by

Σξ = c2rMap Σc c2rMap
′ = c2rMap y2cMap Σe y2cMap

′ c2rMap′. (6.4)

6.5.3 Confidence Limits for Prince Rupert’s Log Precipitation

We can now plot the smooth of the precipitation data for Prince Rupert, British
Columbia, Canada’s rainiest weather station. The log precipitation data are stored
in 365 by 35 matrix logprecav, and Prince Rupert is the 29th weather station in
our data base. We first smooth the data:

lambda = 1e6;
fdParobj = fdPar(daybasis, harmaccelLfd, lambda)
logprecList= smooth.basis(day.5, logprecav, fdParobj)
logprec.fd = logprecList$fd
fdnames = list("Day (July 1 to June 30)",

"Weather Station" = CanadianWeather$place,
"Log 10 Precipitation (mm)")

logprec.fd$fdnames = fdnames
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Next we estimate Σe, which we assume is diagonal. Consequently, we need only
estimate the variance of the residuals across weather stations for each day. We do
this by smoothing the log of the mean squared residuals and then exponentiating the
result:

logprecmat = eval.fd(day.5, logprec.fd)
logprecres = logprecav - logprecmat
logprecvar = apply(logprecresˆ2, 1, sum)/(35-1)
lambda = 1e8
resfdParobj = fdPar(daybasis, harmaccelLfd, lambda)
logvar.fit = smooth.basis(day.5, log(logprecvar),

resfdParobj)
logvar.fd = logvar.fit$fd
varvec = exp(eval.fd(daytime, logvar.fd))
SigmaE = diag(as.vector(varvec))

Next we get y2cMap from the output of smooth.basis, and compute c2rMap
by evaluating the smoothing basis at the sampling points. We then compute the
variance-covariance matrix for curve values, and finish by plotting the log precip-
itation curve for Prince Rupert along with this curve plus and minus two standard
errors. The result is Figure 6.6.

y2cMap = logprecList$y2cMap
c2rMap = eval.basis(day.5, daybasis)
Sigmayhat = c2rMap %*% y2cMap %*% SigmaE %*%

t(y2cMap) %*% t(c2rMap)
logprec.stderr = sqrt(diag(Sigmayhat))
logprec29 = eval.fd(day.5, logprec.fd[29])
plot(logprec.fd[29], lwd=2, ylim=c(0.2, 1.3))
lines(day.5, logprec29 + 2*logprec.stderr,

lty=2, lwd=2)
lines(day.5, logprec29 - 2*logprec.stderr,

lty=2, lwd=2)
points(day.5, logprecav[,29]))

6.6 Some Things to Try

1. The 35 Canadian weather stations are divided into four climate zones. These are
given in the character vector CanadianWeather$region that is available
in the fda package. After computing and plotting the variance-covariance func-
tional data object for the temperature data, compare this with the same analysis
applied only to the stations within each region to see if the variability varies be-
tween regions. In Chapter 10 we will examine how the mean temperature curves
changes from one region to another.



6.6 Some Things to Try 95

0 100 200 300

0.2
0.4

0.6
0.8

1.0
1.2

Day (July 1 to June 30)

Lo
g 1

0 P
rec

ipi
tat

ion
 (m

m)

Fig. 6.6 The solid curve is the smoothed base 10 logarithm of the precipitation at Prince Rupert,
British Columbia. The dashed lines indicate 95% point-wise confidence limits for the smooth curve
based on the data shown as circles.

2. What does the covariance bivariate functional data object look like describing the
covariation between temperature and log precipitation?

3. Examine the phase-plane diagram for each of the temperature curves.
4. Compute the standard deviation function for the precipitation data, and for the log

precipitation data. For each case, plot values of the standard deviation function
against values of the mean function. Do you see a general linear trend for the
precipitation data, and less of that trend for the log precipitation data?

5. Examine the residuals for the growth data from their monotone smooths. Do
they appear to be normally distributed, or do they exhibit long tails? Do the error
variances seem to vary substantially from child to child? Are there any outliers,
perhaps due to a failure of the smoothing algorithm, or problems with the mea-
surement process? How does error variance depend on age?

6. Explore the residuals for correlation structure. How would one do this when the
data are not equally distributed? One possibility is to treat them as spatial data,
and use methods developed in that domain to answer these questions.





Chapter 7
Exploring Variation: Functional Principal and
Canonical Components analysis

Now we look at how observations vary from one replication or sampled value to the
next. There is, of course, also variation within observations, but we focussed on that
type of variation when considering data smoothing in Chapter 5.

Principal components analysis, or PCA, is often the first method that we turn to
after descriptive statistics and plots. We want to see what primary modes of varia-
tion are in the data, and how many of them seem to be substantial. As in multivariate
statistics, eigenvalues of the bivariate variance-covariance function v(s, t) are indi-
cators of the importance of these principal components, and plotting eigenvalues is
a method for determining how many principal components are required to produce
a reasonable summary of the data.

In functional PCA, there is an eigenfunction associated with each eigenvalue,
rather than an eigenvector. These eigenfunctions describe major variational compo-
nents. Applying a rotation to them often results in a more interpretable picture of
the dominant modes of variation in the functional data, without changing the total
amount of common variation.

We take some time over PCA partly because this may be the most common func-
tional data analysis and because the tasks that we face in PCA and our approaches to
them will also be found in more model-oriented tools such as functional regression
analysis. For example, we will see that each eigenfunction can be constrained to be
smooth by the use roughness penalties, just as in the data smoothing process. Should
we use rough functions to capture every last bit of interesting variation in the data,
and then force the eigenfunctions to be smooth, or should we carefully smooth the
data first before doing PCA?

A companion problem is the analysis the covariation between two different func-
tional variables, based on sample sizes taken from the same set of cases or individ-
uals. For example, what types of variation over weather stations do temperature and
log precipitation share? How do knee and hip angles covary over the gait cycle?
Canonical correlation analysis (CCA) is the method of choice here. We will see
many similarities between PCA and CCA.

97
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7.1 An Overview of Functional PCA

In multivariate statistics, variation is usually summarized by either the covariance
matrix or the correlation matrix. Because the variables in a multivariate observation
can vary a great deal in location and scale due to relatively arbitrary choices of
origin and unit of measurement, and because location/scale variation tends to be
uninteresting, multivariate analyses are usually based on the correlation matrix. But
when an observation is functional, values xi(s) and xi(t) have the same origin and
scale. Consequently, either the estimated covariance function

v(s, t) = (N−1)−1 ∑
i
[xi(s)− x̄(s)][xi(t)− x̄(t)],

or the cross-product function

c(s, t) = N−1 ∑
i

xi(s)xi(t),

will tend to be more useful than the correlation function

r(s, t) =
v(s, t)√

[v(s,s)v(t, t)]
.

Principal components analysis may be defined in many ways, but its motivation
is perhaps clearer if we define PCA as the search for a probe ξ , of the kind that we
defined in Chapter 6, that reveals the most important type of variation in the data.
That is, we ask, “For what weight function ξ would the probe scores

ρξ (xi) =
∫

ξ (t)xi(t)dt

have the largest possible variation?” In order for the question to make sense, we
have to impose a size restriction on ξ , and it is mathematically natural to require
that

∫
ξ 2(t)dt = 1.

Of course, the mean curve by definition is a mode of variation that tends to be
shared by most curves, and we already know how to estimate this. Consequently, we
usually remove the mean first, and then probe the functional residuals xi− x̄. Later,
when we look at various types of functional regression, we may also want to first
remove other known sources of variation that are explainable by multivariate and/or
functional covariates.

The probe score variance Var[
∫

ξ (t)(xi(t)− x̄(t))2dt] associated with a probe
weight ξ is the value of

µ = max
ξ
{∑

i
ρ2

ξ (xi)} subject to
∫

ξ 2(t)dt = 1. (7.1)
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In standard terminology, µ and ξ are referred to as the largest eigenvalue and eigen-
function, respectively, of the estimated variance-covariance function v. An alterna-
tive to the slightly intimidating term “eigenfunction” is harmonic.

As in multivariate PCA, a non-increasing sequence of eigenvalues µ1 ≥ µ2 ≥
. . .µk can be constructed step-wise by requiring each new eigenfunction, computed
in step `, to be orthogonal to those computed on previous steps,

∫
ξ j(t)ξ`(t)dt = 0, j = 1, . . . , `−1 and

∫
ξ 2

` (t)dt = 1. (7.2)

In multivariate settings the entire suite of eigenvalue/eigenvector pairs would be
computed by the eigenanalysis of the covariance matrix V, solving the matrix eigen-
equation Vξ j = µ jξ j. The approach is essentially the same for functional data;
that is, we calculate eigenfunctions ξ j of the bivariate covariance function v(s, t) as
solutions of the functional eigen-equation

∫
v(s, t)ξ j(t)dt = µ jξ j(s). (7.3)

We see here as well as elsewhere that going from multivariate to functional data
analysis is often only a matter of replacing summation over integer indices by inte-
gration over continuous indices such as t. Although the computation details are not
at all the same, this is thankfully hidden by the notation and dealt with in the fda
package.

However, there is an important difference between multivariate and functional
PCA caused by the fact that, whereas in multivariate data the number of variables p
is usually less than the number of observations N, for functional data the number of
observed function values n is usually greater than N. This implies that the maximum
number of nonzero eigenvalues in the functional context is min{N−1,K,n}, and in
most applications will be N−1.

Suppose, then, that our software can present us with, say, N− 1 positive eigen-
value/eigenfunction pairs (µ j,ξ j). What’s next? For each choice of `, 1≤ `≤N−1,
the ` leading eigenfunctions or harmonics define a basis system that can be used to
approximate the sample functions xi. These basis functions are orthogonal to each
other, and also normalized in the sense of

∫
ξ 2
` = 1, and are therefore referred to as

an orthonormal basis. They are also the most efficient basis possible of size ` in the
sense that the total error sum of squares

PCASSE=
N

∑
i

∫
[xi(t)− x̄(t)− c′iξ (t)]2dt (7.4)

is the minimum achievable with only ` basis functions. Of course, other `-dimensional
systems certainly exist that will do as well, and we will consider some shortly, but
none will do better. In the physical sciences, these optimal basis functions ξ j are
often referred to as empirical orthogonal functions.

It turns out that there is a simple relationship between the optimal total squared
error and the eigenvalues that are discarded, namely that
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PCASSE=
N−1

∑
j=`+1

µ j.

It is usual, therefore, to base a decision on the number ` of harmonics to use on a
visual inspection of a plot of the eigenvalues µ j against their indices j, a display
that is often referred to in the social science literature as a scree plot. Although there
are a number of proposals for automatic data-based rules for deciding the value of
`, many non-statistical considerations can also affect this choice.

The coefficient vectors ci, i = 1, . . . ,N contain the coefficients ci j that define the
optimal fit to each function xi, and are referred to as principal component scores.
They are given by the following:

ci j = ρξ j(xi− x̄) =
∫

ξ j(t)[xi(t)− x̄(t)]dt. (7.5)

As we will show below, they can be quite helpful in interpreting the nature of the
variation identified by the PCA. It is also common practice to treat these scores as
“data” to be subjected to a more conventional multivariate analysis.

We suggested that the eigenfunction basis was optimal but not unique. In fact, for
any nonsingular square matrix L of order `, the system φ = Tξ is also optimal and
spans exactly the same functional subspace as that spanned by the eigenfunctions.
Moreover, if T′ = T−1, such matrices being often referred to as rotation matrices,
the new system φ is also orthonormal. There is, in short, no mystical significance to
the eigenfunctions that PCA generates, a simple fact that is often overlooked in text-
books on multivariate statistics. Well, okay, perhaps ` = 1 is an exception. In fact,
it tends to happen that only the leading eigenfunction has an obvious meaningful
interpretation in terms of processes known to generate the data.

But for ` > 1, there is nothing to prevent us from searching among the infinite
number of alternative systems φ = Tξ to find one where all of the orthonormal basis
functions φ j are seen to have some substantive interpretation. In the social sciences,
where this practice is routine, a number of criteria for optimizing the chances of
interpretability have been devised for choosing a rotation matrix T, and we will
demonstrate the usefulness of the popular VARIMAX criterion in our examples.

Readers are referred at this point to standard texts on multivariate data analysis
or to the more specialized treatment in (Jolliffe, 2002) for further information on
principal components analysis. Most of the material in these sources applies to this
functional context.

7.2 PCA with Function pca.fd

Principal component analysis is implemented in the functions pca.fd and pca fd
in R and Matlab, respectively. The call in R is

pca.fd(fdobj, nharm = 2, harmfdPar=fdPar(fdobj),
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centerfns = TRUE)

The first argument is a functional data object containing the functional data to be
analyzed, and the second specifies the number ` of principal components to be re-
tained. The third argument is a functional parameter object that provides the in-
formation necessary to smooth the eigenfunctions if necessary; we will postpone
this topic to Section 7.3. Finally, although most principal components analyses are
applied to data with the mean function subtracted from each function, the final ar-
gument permits this to be suppressed.

Function pca.fd in R returns an object with the class name pca.fd, so that it
is effectively a constructor function. Here are the named attributes for this class:

harmonics a functional data object for the ` harmonics or eigenfunctions ξ j
values the complete set of eigenvalues µ j
scores the matrix of scores ci j on the principal components or harmonics
varprop a vector giving the proportion µ j/∑ µ j of variance explained by each

eigenfunction
meanfd a functional data object giving the mean function x̄.

7.2.1 PCA of the Log Precipitation Data

Here is the command to do a PCA using only two principal components for the log
precipitation data, and display the eigenvalues.

logprec.pcalist = pca.fd(logprecfd, 2)
print(logprec.pcalist$values)

We observe that these two harmonics account for 96% of the variation around the
mean log precipitation curve; the first four eigenvalues are 39.5, 3.9, 1.0 and 0.1,
respectively.

The two principal components are plotted by the command

plot.pca.fd(logprec.pcalist)

Figure 7.1 shows the two principal component functions by displaying the mean
curve along +’s and -’s indicating the consequences of adding and subtracting a
small amount of each principal component. We do this because a principal com-
ponent represents variation around the mean, and therefore is naturally plotted as
such. We see that the first harmonic, accounting for 88% of the variation, represents
a relative constant vertical shift in the mean, and that the second shows essentially a
contrast between winter and summer precipitation levels.

It is in fact usual for unrotated functional principal components to display the
same sequence of variation no matter what is being analyzed. The first will be a
constant shift, the second a linear contrast between the first and second half with a
single crossing of zero, the third a quadratic pattern, and so on. That is, we tend to
see the sequence of orthogonal polynomials. However, for periodic data, where only
periodic harmonics are possible, the linear contrast is suppressed.
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Fig. 7.1 The two principal component functions or harmonics are shown as perturbations of the
mean, which is the solid line. The +’s show what happens when a small amount of a principal
component is added to the mean, and the -’s show the effect of subtracting the component.

The fact that unrotated functional principal components are so predictable em-
phasizes the need for looking for a rotation of them that can reveal more meaningful
components of variation. The VARIMAX rotation algorithm is often used for this
purpose. The following command applies this rotation and then plots the result:

logprec.rotpcalist = varmx.pca.fd(logprec.pcalist)
plot.pca.fd(logprec.rotpcalist)

The results are plotted in Figure 7.2. The first component portrays variation that is
strongest in mid winter, and the second captures primarily summer variation. More-
over, the first component is about three times as strong as the second, a feature that
we already saw in Figure 6.1.

It can be profitable to plot the principal component scores for pairs of harmon-
ics to see how curves cluster and otherwise distribute themselves within the K-
dimensional subspace spanned by the eigenfunctions. Figure 7.3 reveals some fas-
cinating structure. Most of the stations are contained within two clusters: the upper
right with the Atlantic and central Canada stations, and the lower left with the prairie
and mid-Arctic stations. The outliers are the three west coast stations and Resolute
in the high Arctic.

Often, functional data analyses will turn into a multivariate data analysis at this
point by using the component scores as “data matrices” in more conventional anal-
yses.

It may be revealing to apply PCA to some order of derivative rather than to
the curves themselves, because underlying processes may reveal their effects at the
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Fig. 7.2 The two rotated principal component functions are shown as perturbations of the mean,
which is the solid line. The top panel contains the strongest component, with variation primarily in
the mid-winter. The bottom panel shows primarily summer variation.
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change level rather than at the level of what we measure. This is certainly true of
growth curve data, where hormonal processes and other growth activators change
the rate of change of height and can be especially evident at the level of the acceler-
ation curves that we plotted in Section 1.1.

7.2.2 PCA of Log Precipitation Residuals

We can now return to exploring the residuals from the smooths of the log precipita-
tion curves in Chapter 5. First, we set up function versions of the residuals and plot
them:

logprecres.fd = smooth.basis(daytime, logprecres,
fdParobj)$fd

plot(logprecres.fd, lwd=2, col=4, lty=1, cex=1.2,
xlim=c(0,365), ylim=c(-0.07, 0.07),
xlab="Day", ylab="Residual (log 10 mm)")

These are shown in Figure 7.4. There we see that, while most of these residual func-
tions show fairly chaotic variation, there seems to be three stations that have large
oscillations in the summer and autumn. The result of estimating a single princi-
pal component is shown in Figure 7.5, where we see the mean residual along with
the effect of adding and subtracting this first component. The mean residual itself
shows the oscillation that we have noted. The principal component accounts for
about 66% of the residual variance about this mean. It defines variation around the
mean oscillation located in these months. Three stations have much larger scores on
this component: They are Kamloops, Victoria and Vancouver, all in southern British
Columbia. It seems that rainfall events come in cycles in this part of Canada at this
time of the year, and there is indeed interesting structure to be uncovered in these
residuals.

7.3 More Functional PCA Features

In multivariate PCA, we control the level of fit to the data by selecting the number
of principal components. In functional PCA, we can also modulate fit by controlling
the roughness of the estimated eigenfunctions. We do this by modifying the defini-
tion of orthogonality. If, for example, we want to penalize excessive curvature in
principal components, we can use this generalized form of orthogonality:

∫
ξ j(t)ξk(t)dt +λ

∫
D2ξ j(t)D2ξk(t)dt = 0, (7.6)
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Fig. 7.4 The smoothed residual functions for the log precipitation data.
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Fig. 7.5 The first principal component for the log precipitation residual functions, shown by adding
(+) and subtracting (-) the component from the mean function (solid line).
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where λ controls the relative emphasis on orthogonality of second derivatives in
much the same way as it does in roughness–controlled smoothing. This gives us a
powerful new form of leverage in defining a decomposition of variation.

Roughness penalized PCA also relates to a fundamental aspect of variation in
function spaces. Functions can be large in two distinct ways: first and most obvi-
ously in terms of their amplitude, and second in terms of their complexity or amount
of high frequency variation. This second attribute is closely related to how rapidly
a Fourier series expansion of a function converges, and is therefore simply another
aspect of how PCA itself works. This second type of size of principal components
is what λ controls. Ramsay and Silverman (2005) show how λ in PCA can be data-
defined via cross-validation.

7.4 PCA of joint X-Y Variation in Handwriting

Of course, functions themselves may be multivariate. When we apply PCA to the
data shown in Section 1.2 on the writing of the script “fda”, we have to do a simulta-
neous PCA of the X and Y coordinates. The corresponding eigenfunctions will also
be multivariate, but each eigenfunction is still associated with a single eigenvalue
µ j. This means that multivariate PCA is not the same thing as separate PCA’s ap-
plied to each coordinate in turn. The multivariate PCA problem, therefore, blends
together the aspects of multivariate and functional data analyses.

At the level of code, however, multivariate PCA is achieved seamlessly by func-
tion pca.fd. The following commands in R carry out the PCA of bivariate func-
tional data object fdafd using three harmonics, plots the unrotated eigenfunctions,
carries out a VARIMAX rotation of these eigenfunctions, and re-plots them.

nharm = 3
fdapcaList = pca.fd(fdafd, nharm)
plot.pca.fd(fdapcaList)
fdarotpcaList = varmx.pca.fd(fdapcaList)
plot.pca.fd(fdarotpcaList)

How did we settle on three for the number of harmonics? We have found that
the logarithm of eigenvalues tend to decrease linearly after an initial few that are
large. The following commands plot the log eigenvalues up to j = 12 with the least
squares linear trend in the eigenvalue with indice 3 to 12.

fdaeig = fdapcaList$values
neig = 12
x = matrix(1,neig-nharm,2)
x[,2] = nharm:neig
y = log10(fdaeig[nharm:neig])
c = lsfit(x,y,int=FALSE)$coef
par(mfrow=c(1,1),cex=1.2)
plot(1:neig, log10(fdaeig[1:neig]), "b",
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xlab="Eigenvalue Number",
ylab="Log10 Eigenvalue")

lines(1:neig, c[1]+ c[2]*(1:neig), lty=2)

The result is Figure 7.6. The first three log eigenvalues seem well above the linear
trend in the next nine, suggesting that the leading three harmonics are important.
Together they account for 62% of the variation in the scripts.
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Fig. 7.6 The logarithms (base 10) of the first 12 eigenvalues in the principal components analysis
of the “fda” handwriting data. The dashed line indicates the linear trend in the last nine in the
sequence.

Figure 7.7 plots two of the VARIMAX–rotated eigenfunctions as perturbations
of the mean script. The rotated harmonic on the left mostly captures variation in
the lower loop of “f”, and harmonic on the right in its upper loop, suggesting that
variabilities in these two loops are independent of each other.

We can also analyze situations where there are both functional and multivariate
data available, such as handwritings from many subjects along with measurements
of subject characteristics such as age, ethnicity and etc. See Ramsay and Silverman
(2005) for further details.
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Fig. 7.7 Two of the rotated harmonics are plotted as a perturbations of the mean “fda” script,
shown as a heavy solid line.

7.5 Exploring Functional Covariation with Canonical
Correlation Analysis

We often want to examine the ways in which two sets of curves (xi,yi), i = 1, . . . ,N,
share variation. How much variation, for example, is shared between temperature
and log precipitation over the 35 Canadian weather stations? This question is re-
lated to the issue of how well one can predict one from another, which we will take
up in the next Chapter. Here, we consider a symmetric view on the matter that does
not privilege either variable. We offer here only a quick summary of the mathemat-
ical aspects of canonical correlation analysis, and refer the reader to Ramsay and
Silverman (2005) a more detailed account.

To keep the notation tidy, we will assume that the two sets of variables have been
centered, that is, xi and yi have been replaced by the residuals xi − x̄ and yi − ȳ,
respectively, if this was considered appropriate. That is, we assume that x̄ = ȳ = 0.
As before, we define a modes of variation for the xi’s and the yi’s in terms of the
pair of probe weight functions ξ and η that define the integrals

ρξ i =
∫

ξ (t)xi(t)dt and ρη i =
∫

η(t)yi(t)dt, (7.7)

respectively. The N pairs of probe scores (ρξ i,ρη i) defined in this way represent
shared variation if they correlate strongly with one another.

The canonical correlation criterion is the squared correlation
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R2(ξ ,η) =
[∑i ρξ iρη i]2

[∑i ρ2
ξ i][∑i ρ2

η i]
=

[∑i(
∫

ξ (t)xi(t)dt)(
∫

η(t)yi(t)dt)]2

[∑i(
∫

ξ (t)xi(t)dt)2][∑i(
∫

η(t)yi(t)dt)2]
(7.8)

As in PCA, the probe weights ξ and η are then specified by finding that weight
pair that optimizes the criterion R2(ξ ,η). But, again as in PCA, we can compute a
non-increasing series of squared canonical correlations R2

1,R
2
2, . . . ,R

2
k by constrain-

ing successive canonical probe values to be orthogonal. The length k of the sequence
is the smallest of the sample size N, the number of basis functions for either func-
tional variable, or the number of basis functions used for ξ and η .

That we are now optimizing with respect to two probes at the same time makes
canonical correlation analysis an exceedingly greedy procedure, where this term
borrowed from data mining implies that CCA can capitalize on the tiniest variation
in either set of functions in maximizing this ratio to the extent that, unless we exert
some control over the process, it can hard to see anything of interest in the result. It is
in practice essential to enforce strong smoothness on the two weight functions ξ and
η to limit this greediness. This can be done by either selecting a low-dimensional
basis for each, or by using an explicit roughness penalty in much the same manner
as is possible for functional PCA.

Let’s see how this plays out in the exploration of covariation between daily tem-
perature and log precipitation, being careful to avoid the greediness pitfall by using
only the first three fourier series basis functions to represent both canonical weight
functions. This means that the maximum number k of canonical components will be
three in this case. Here are the commands in R that function cca.fd to do the job:

ccabasis = create.fourier.basis(dayrange, 3)
ccalist = cca.fd(tempfd, logprecfd, 3,

ccabasis, ccabasis)

The third argument of cca.fd specifies the number of canonical weight/variable
pairs that we want to examine, which, in this case, is the complete sequence. The
final two arguments specify the bases for the expansion of ξ and η , respectively. We
find in the list of results the slot ccalist$corrs, which contains for these data
the squared correlations 0.94, 0.45 and 0.32. Thus, there a dominant pair of modes
of variation that correlate at a high level, and then two subsequent pairs with modest
but perhaps interesting correlations.

Consider first the type of variation associated with the first canonical correlation.
Figure 7.8 displays two sines that are neatly out of phase. Both signs are shifted
downwards from zero, and hence, when applied to their respective curves, will re-
flect to some extent how cold and dry, respectively, the stations are. The temperature
canonical weight function ξ1 is high in the first half of the year and low in the sec-
ond, and tends to contrast spring and autumn temperatures; but the log precipitation
counterpart η1 contrasts spring and autumn dryness. A station will score high on
both canonical variables if it is cold and dry year round, and tending to be warmer
in spring than in autumn but dryer in spring than in autumn. Figure 7.9 plots log
precipitation canonical variable scores against their temperature counterparts, and
we see a near perfect ordering with respect to latitude, although favoring eastern
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stations over western stations at the same latitudes so that Vancouver and Victoria
wind up at the bottom left. Most Canadians would prefer these stations as places to
live in nearly the reverse order. Note, though, that this linear order misses Kamloops
by a noticeable amount. The position of this interior British Columbia city deep in
a valley, where relatively little rain or snow falls at any time of the year, causes it to
be anomalous in many types of analysis.
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Fig. 7.8 The first pair of canonical weight functions or probes (ξ ,η) correlating temperature and
log precipitation for the Canadian weather data.

7.6 Details for the pca.fd and cca.fd Functions

7.6.1 The pca.fd Function

We give here the arguments of the constructor function pca.fd that carries out a
functional principal components analysis and constructs an object of the pca.fd
class. The complete calling sequence is

pca.fd(fdobj, nharm = 2, harmfdPar=fdPar(fdobj),
centerfns = TRUE)

The arguments are as follows:

fdobj a functional data object.
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Fig. 7.9 The scores for the first pair of canonical variables plotted against each other.

nharm the number of harmonics or principal components to compute.
harmfdPar a functional parameter object that defines the harmonic or principal

component functions to be estimated.
centerfns a logical value: if TRUE, subtract the mean function from each

function before computing principal components.

Function pca.fd returns an argument of the pca.fd class, which is a named
list with the following components:

harmonics a functional data object for the harmonics or eigenfunctions
values the complete set of eigenvalues
scores a matrix of scores on the principal components or harmonics
varprop a vector giving the proportion of variance explained by each eigen-

function
meanfd a functional data object giving the mean function

7.6.2 The cca.fd Function

The calling sequence for cca.fd is

cca.fd(fdobj1, fdobj2=fdobj1, ncan = 2,
ccafdParobj1=fdPar(basisobj1, 2, 1e-10),
ccafdParobj2=ccafdParobj1, centerfns=TRUE)

The arguments are as follows:
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fdobj1 a functional data object.
fdobj2 a functional data object. By default this is fdobj1, in which case the

first argument must be a bivariate functional data object.
ncan the number of canonical variables and weight functions to be computed.

The default is 2.
ccafdParobj1 a functional parameter object defining the first set of canonical

weight functions. The object may contain specifications for a roughness penalty.
The default is defined using the same basis as that used for fdobj1 with a
slight penalty on its second derivative.

ccafdParobj2 a functional parameter object defining the second set of canon-
ical weight functions. The object may contain specifications for a roughness
penalty. The default is ccafdParobj1 .

centerfns if TRUE, the functions are centered prior to analysis. This is the
default.

7.7 Some Things to Try

1. Medfly Data: The Medfly data have been a popular dataset for functional data
analysis and are included in the fda package. The Medfly data consist of records
of the number of eggs laid by 50 fruit flies on each of 31 days, along with each
individual’s total lifespan.

a. Smooth the data for the number of eggs, choosing the smoothing parameter
by generalized cross validation (GCV). Plot the smooths.

b. Conduct a principal components analysis using these smooths. Are the com-
ponents interpretable? How many do you need to retain to recover 90% of the
variation. If you believe that smoothing the PCA will help, do so.

c. Try a linear regression of lifespan on the principal component scores from
your analysis. What is the R2 for this model? Does lm find that the model is
significant? Reconstruct and plot the co-efficient function for this model along
with confidence intervals. How does it compare to the model obtained through
functional linear regression?

2. Apply principal components analysis to the functional data object Wfd re-
turned by the monotone smoothing function smooth.monotone applied to
the growth data. These functions are the logs of the first derivatives of the growth
curves. What is the impact of the variation in the age of the pubertal growth spurt
on these components?
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7.8 More to Read

Functional principal components analysis predates the emergence of functional data
analysis, and especially in fields in the engineering and the sciences that work with
functional data routinely, such as climatology. Principal components are often re-
ferred to in these fields as empirical basis functions, a phrase that is exactly the
right thing since functional principal components are both orthogonal and can also
serve well as a customized low-dimensional basis system for representing the actual
functions.

There are many currently active and unexplored areas of research into functional
PCA. James et al. (2000) consider situations where curves are observed in frag-
ments, so that the interval of observation varies from record to record. James and
Sugar (2003) look at the same data situation in the context of cluster analysis, an-
other multivariate exploratory tool that is now associated with a large functional lit-
erature. Readers with a background in psychometrics will wonder about a functional
version of factor analysis, whether exploratory or confirmatory; and functional ver-
sions of structural equation models are well down the road, but no doubt perfectly
feasible.





Chapter 8
Registration: Aligning Features for Samples of
Curves

This chapter presents two methods for separating phase variation from amplitude
variation in functional data: landmark and continuous registration. We mentioned
this problem in Section 1.1.1. We saw in the height acceleration curves in Figure
1.2 that the age of the pubertal growth spurt varies from girl to girl; this is phase
variation. In addition, the intensity of the pubertal growth spurt also varies; this
is amplitude variation. Landmark registration aligns features that are visible in all
curves by estimating a strictly increasing nonlinear transformation of time that takes
all the times of a given feature into a common value. Continuous registration uses
the entire curve rather than specified features, and can provide a more complete
curve alignment.

The chapter describes a decomposition technique that permits the expression of
the amount of phase variation in a sample of functional variation as a proportion of
total variation.

8.1 Amplitude and Phase Variation

Figure 1.2 presented the problem that curve registration is designed to solve. This
figure is reproduced in the top panel of Figure 8.1 along with a solution in the
bottom panel. In both panels, the dashed line indicates the mean of these ten growth
acceleration curves. In the top panel, this mean curve is unlike any of the individual
curves in that the duration of the mean pubertal growth is longer than it should be
and the drop in acceleration is not nearly as steep as even the shallowest of the
individual curves. These aberrations are due to the ten girls not being in the same
phase of growth at around 10 to 12 years of age. We see from the figure that peak
growth acceleration occurs around age 10.5 for many girls, but this occurred before
age 8 for one girl and after age 13 for another. Similarly, the maximum pubertal
growth rate occurs where the accelerating drops to zero following the maximum
pubertal acceleration. This occurs before age 10 for two girls and around age 14 for
another, averaging around 11.7 years of age. If we average the growth accelerations

115
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at that age, one girl has not yet begun her pubertal growth spurt, three others are
at or just past their peak acceleration, and the rest are beyond their peak pubertal
growth rate with negative acceleration. This analysis should make it fairly easy to
understand why the average of these acceleration curves displays an image that is
very different from any of the individual curves.
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Fig. 8.1 The top panel reproduces the second derivatives of the growth curves shown in Figure 1.2.
The landmark–registered curves corresponding to these are shown in the bottom panel, where the
single landmark was the crossing of zero in the middle of the pubertal growth spurt. The dashed
line in each panel indicates the mean curve for the curves in that panel.

The bottom panel in Figure 1.2 uses landmark registration to align these curves
so the post-spurt accelerations for all girls cross zero at the same time. Then when
we average the curves, we get a much more realistic representation of the typical
pubertal growth spurt, at least among the girls in this study.

Functions can vary in both phase and amplitude, as illustrated schematically in
Figure 8.2. Phase variation is illustrated in the top panel as a variation in the loca-
tion of curve features along the horizontal axis, as opposed to amplitude variation,
shown in the bottom panel as the size of these curves. The mean curve in the top
panel, shown as a dashed curve, does not resemble any curve; it has less amplitude
variation, but its horizontal extent is greater than that of any single curve. The mean
has, effectively, borrowed from amplitude to accommodate phase. Moreover, if we
carry out a functional principal components analysis of the curves in each panel, we
find in the top panel that the first three principal components account for 56%, 39%
and 5%, of the variation. On the hand, the same analysis of the amplitude varying
curves requires a single principal component to account for 100% of the variation.
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Like the mean and principal components, most statistical methods, when translated
into the functional domain, are designed to model purely amplitude variation.
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Fig. 8.2 The top panel shows five curves varying only in phase. The bottom panel shows five
curves varying only in amplitude. The dashed line in each panel indicates the mean of the five
curves. This curve in the bottom panel is superimposed exactly on the central curve.

There is physiological growth time that unrolls at different rates from child to
child relative to clock time. In terms of growth time, all girls experience puberty at
the same age, with the peak growth rate (zero acceleration) occurring at about 11.7
years of age for the Berkeley sample. If we want a reasonable sense of amplitude
variation, we must consider it with this growth time frame of reference. Growth time
itself is an elastic medium that can vary randomly from girl to girl when viewed
relative to clock time, and functional variation has the potential to be bivariate, with
variation in both the range and domain of a function.

8.2 Time-Warping Functions and Registration

We can remove phase variation from the growth data if we can estimate a time-
warping function hi(t) that transforms growth time t to clock time for child i. For
example, we can require that hi(11.7) = ti for all girls, where 11.7 years is the
average time at which the Berkeley girls reached their mid-pubertal spurt (PBS),
and ti is the clock age at which the ith girl reached this event. If, at any time t,
hi(t) < t, we may say that the girl is growing faster than average at that clock time,
but slower than average if hi(t) > t. This is illustrated in Figure 8.3, where the
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growth acceleration curves for the earliest and latest of the first ten girls are shown
in the left panels, and their corresponding time-warping functions in the right panels.
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Fig. 8.3 The top panels show the growth acceleration curve on the left and the corresponding time-
warping function h(t) on the right for the girl among the first ten in the Berkeley growth study with
the earliest pubertal growth spurt. The corresponding plots for the girl with the latest growth spurt
are in the bottom two panels. The mean age of 11.7 years for the middle of the growth spurt is
shown as the vertical dashed line in all panels.

Time-warping functions must, of course, be strictly increasing; we can’t allow
time to go backwards in either frame of reference. Time-warping functions must
also be smooth in the sense of being differentiable up to at least what applies to the
curves being registered. If the curves are observed over a common interval [0,T ], the
time-warping functions must often satisfy the constraints h(0) = 0 and h(T ) = T ,
but it may be that varying intervals [0,Ti] may each be transformed to a common
interval [0,T ]. In the special case of periodic curves, such as average temperature
and precipitation profiles, we may also allow a constant shift hi(t) = ti +δi.

8.3 Landmark Registration with Function landmarkreg

The simplest curve alignment procedure is landmark registration. A landmark is
a feature with a location that is clearly identifiable in all curves. Landmarks may
be the locations of minima, maxima or crossings of zero, and we see three such
landmarks in each curve Figure 8.2. We align the curves by transforming t for each
curve so that landmark locations are the same for all curves.
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For the bottom panel in Figure 1.2, we used a single landmark ti being the age
for girl i at which her acceleration curve crossed 0 with a negative slope during the
pubertal growth spurt. Also, let us define t0 as a time specified for the middle of the
average pubertal growth spurt, such as 11.7 years of age for Berkeley growth study
girls. Then we specify time-warping functions hi by fitting a smooth function to the
three points (1,1),(t0, ti), and (18,18). This function should be as differentiable as
the curves themselves, and in this case could be simply the unique parabola passing
through the three points (1,1),(t0, ti) and (18,18), which is what is shown in the
right panels of Figure 8.3.

The registered height functions are x∗i (t) = xi[h−1
i (t)], where the aligning func-

tion h−1(t) satisfies the following equation:

h−1[h(t)] = t (8.1)

This is the functional inverse of h(t). Since at time hi(t0) girl i is in the middle of
her pubertal growth spurt, and since in her registered time h−1

i [hi(t0)] = t0, she and
all the other children will experience puberty at time t0 in terms of registered or
“growth” time. In particular, if hi(t0) < t0 for a girl i reaching puberty early, then
aligning function h−1

i (t) effectively slows down or stretches out her clock time so
as to conform with growth time.

This code allows you to select the age of the center of the pubertal growth spurt
for the first 10 girls, applying the R function locator() to plots of a functional
data object accfd that contains estimated acceleration curves.

PGSctr = rep(0,10)
agefine = seq(1,18,len=101)
par(mfrow=c(1,1), ask=TRUE)
for (icase in 1:10) {

accveci = predict(accfd[icase], agefine)
plot(agefine,accveci,"l", ylim=c(-6,4),

xlab="Year", ylab="Height Accel.",
main=paste("Case",icase))

lines(c(1,18),c(0,0),lty=2)
PGSctr[icase] = locator(1)$x

}

Now we set up the three monomial basis functions 1, t and t2 along with a func-
tional parameter object for smoothing the relationship between points (1,1),(11.7, ti)
and (18,18).

PGSctrmean = mean(PGSctr)
wbasisLM = create.monomial.basis(c(1,18), 3)
WfdParLM = fdPar(wbasisLM)

Next, we can register the curves using landmarkreg(). The value TRUE for the
final argument requires the function to estimate this relationship using monotone
smoothing, so that it will be strictly monotone.
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landmarkList = landmarkreg(accfd, PGSctr, PGSctrmean,
WfdParLM, TRUE)

accregfdLM = landmarkList$regfd
warpfdLM = landmarkList$warpfd

The bottom panel of Figure 8.1 displays the same ten female growth acceleration
curves after registering to the middle of the pubertal growth spurt. We see that the
curves are now exactly aligned at the mean PGS (pubertal growth spurt) age, but
that there is still some misalignment for the maximum and minimum acceleration
ages. Our eye is now drawn to the curve for girl seven, who’s acceleration minimum
is substantially later than the others and who has still not reached zero acceleration
by age 18. The long period of near zero acceleration for girl 4 prior to puberty also
stands out as unusual. The mean curve is now much more satisfactory as a summary
of the typical shape of growth acceleration curves, and in particular is nicely placed
in the middle of the curves for the entire pubertal growth spurt period.

8.4 Continuous Registration with Function register.fd

We may need registration methods that use the entire curves rather than their values
at specified points. A number of such methods have been developed, and the prob-
lem continues to be actively researched. Landmark registration is usually a good first
step, but we need a more refined registration process if landmarks are not visible in
all curves. For example, many but not all female growth acceleration curves have at
least one peak prior to the pubertal growth spurt that might be considered a land-
mark. Even when landmarks are clear, identifying their timing may involve tedious
interactive graphical procedures, and we might prefer a fully automatic method. Fi-
nally, as we saw in Figure 8.1, landmark registration using just a few landmarks can
still leave aspects of the curves unregistered at other locations.

Here we illustrate the use of function register.fd to further improve the ac-
celeration curves that have already been registered using function landmarkreg.
The idea behind this method is that, if an arbitrary sample registered curve x[h(t)]
and target curve x0(t) differ only in terms of amplitude variation, then their values
will tend to be proportional to one another across the range of t-values. That is, if we
were to plot the values of the registered curve against the target curve, we would see
something approaching a straight line tending to pass through the origin, although
not necessarily at angle 45 degrees with respect to the axes of the plot. If this is
true, then a principal components analysis of the following order two matrix T(h)
of integrated products of these values should reveal essentially one component, and
the smallest eigenvalue should be near 0:

C(h) =
[ ∫ {x0(t)}2 dt

∫
x0(t)x[h(t)]dt∫

x0(t)x[h(t)]dt
∫ {x[h(t)]}2 dt

]
. (8.2)
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According to this rationale, then, estimating h so as to minimize the smallest eigen-
value of C(h) should do the trick. This is exactly what register.fd does for
each curve in the sample.

If the curves are multivariate, such as coordinates of a moving point, then what
is minimized is the sum of smallest eigenvalues across the components of the curve
vectors. We recall, too, that curve x(t) may in fact be a derivative of the curve used
to smooth the data.

In the following code, we use a slightly more powerful basis for defining the
functions W (t) than we used in Chapter 5 to estimate strictly monotone functions.
Because the continuous registration process requires iterative numerical optimiza-
tion techniques, we have to supply starting values for the coefficients defining the
functions W , and do this by using zeros in defining initial functional data object
Wfd0CR.

wbasisCR = create.bspline.basis(c(1,18), 5, 4,
c(1,PGSmeanctr,18))

Wfd0CR = fd(matrix(0,5,10),wbasisCR)
regList = register.fd(mean(accregfdLM),

accregfdLM, Wfd0CR)
accregfdCR = regList$regfd
WfdCR = regList$Wfd

Figure 8.4 shows that the continuously registered height acceleration curves are
now aligned over the entire PGS relative to the landmark–registered curves, al-
though we have sacrificed a small amount of alignment of the zero–crossings of
these curves. Figure 8.5 shows the impacts of the two types of registrations, and
we see that both registrations provide average curves with maximum and minimum
values much more typical of the individual curves, as well as the width of the PGS.

8.5 A Decomposition into Amplitude and Phase Sums of Squares

Kneip and Ramsay (2008) developed a useful way of quantifying the amount of
these two types of variation by comparing results for a sample of N functional ob-
servations before and after registration. The notation xi stands for the unregistered
version of the ith observation, yi for it’s registered counterpart and hi for associated
warping function. The sample means of the unregistered and registered samples are
x̄ and ȳ, respectively.

The total mean squared error is defined as

MSEtotal = N−1
N

∑
i

∫
[xi(t)− x̄(t)]2 dt. (8.3)

We define the constant CR as
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Fig. 8.4 The continuous registration of the landmark–registered height acceleration curves in Fig-
ure 8.1. The vertical dashed line indicates the target landmark age used in the landmark registration.
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Fig. 8.5 The mean of the continuously registered acceleration curves is shown as a heavy solid
line, and that of the landmark registered curves as a light solid line. The light dashed line is the
mean of the unregistered curves
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CR = 1+
N−1 ∑N

i
∫
[Dhi(t)−N−1 ∑N

i Dhi(t)][y2
i (t)−N−1 ∑N

i y2
i (t)]dt

N−1 ∑N
i

∫
y2

i (t)dt
. (8.4)

The structure of CR indicates that CR− 1 is related to the covariation between the
deformation functions Dhi and the squared registered functions y2

i . When these two
sets of functions are independent, the number of the ratio is 0 and CR = 1.

The measures of amplitude and phase mean squared error are, respectively,

MSEamp = CRN−1
N

∑
i

∫
[yi(t)− ȳ(t)]2 dt

MSEphase = CR

∫
ȳ2(t)dt−

∫
x̄2(t)dt. (8.5)

It can be shown that, defined in this way, MSEtotal = MSEamp +MSEphase.
The interpretation of this decomposition is as follows. If we have registered our

functions well, then the registered functions yi will have higher and sharper peaks
and valleys, since the main effect of mixing phase variation with amplitude varia-
tion is to smear variation over a wider range of t values, as we saw in Figure 1.2 and
Figure 8.2. Consequently, the first term in MSEphase will exceed the second, and is
a measure of how much phase variation has been removed from the yi’s by registra-
tion. On the other hand, MSEamp is now a measure of pure amplitude variation to
the extent that the registration has been successful. The decomposition does depend
on the success of the registration step, however, since it is possible in principle for
MSEphase to be negative.

From this decomposition we can get a useful squared multiple correlation index
of the proportion of the total variation due to phase:

R2 =
MSEphase

MSEtotal
(8.6)

The function AmpPhaseDecomp returns a list with attributes MS.amp, MS.pha,
RSQR and C. The commands

AmpPhasList = AmpPhaseDecomp(accffd, accregfdLM, Wfd)
RSQR = AmpPhasList$RSQR

after landmark registration of the growth acceleration curves yields the value R2 =
0.50, indicating that about half of the variation in growth acceleration is due to
phase.

On the other hand, if we use this decomposition to compare the landmark regis-
tered curves in Figure 8.1 with those for the continuously registered curves in Fig-
ure 8.4, we get the value -0.19. What does this mean? It illustrates the principle that
“registered” is a rather fuzzy qualifier in the sense that we can define the registration
process is different ways to get different answers. A careful comparison of the two
figures might suggest that the landmark registration process has over-registered the
pubertal growth spurt at the expense of earlier growth spurts visible in several of
the curves. Or, alternatively, if our main concern is getting pubertal growth right,
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then the continuous registration process has de–registered the landmark–registered
curves by about 19%. In any case, we see in Figure 8.5 that these differences are
inconsequential for the mean registered curve, which both methods get about right.

8.6 Registering the Chinese Handwriting Data

The handwriting data discussed in Section 1.2.2 consisted of the writing of “statis-
tics” in simplified Chinese 50 times. The average time of writing was six seconds,
with the X-, Y- and Z-coordinates of the pen position being recorded 400 times
per second. The handwriting involves 50 strokes, corresponding to about 8 strokes
per second, or 120 milliseconds per stroke. The processing of these data was done
entirely in Matlab, and is too complex to describe in detail here.

The registration phase was carried out in two steps, as was the case for the growth
data. In the first phase, three clear landmarks were visible in all curves in the vertical
Z-coordinate corresponding to points where the pen was lifted from the paper. These
were used in a preliminary landmark registration process for the Z-coordinate alone.
The decomposition described above indicated that 66.6% of the variation in Z was
due to phase. The warping functions were applied to the X- and Y-coordinates as
well, and the decompositions indicated percentages of phase variation of 0% and
75%, respectively. This suggests that most of the phase variation in movement off
the writing plane was associated with motion that was also vertical in the writing
plane.

In a second registration phase, the scalar tangential accelerations,

TAi(t) =
√

D2Xi(t)+D2Yi(t),

of the tip of the pen along the writing path were registered using continuous registra-
tion. This corresponded to 48% of the variation in the landmark-registered tangential
accelerations being due to phase. Figure 8.6 plots the tangential acceleration for all
50 replications before and after applying this two–stage registration procedure. Af-
ter alignment, we see the remarkably small amount of amplitude variation in many
of the acceleration peaks, and we also see how evenly spaced in time these peaks
are. The pen hits acceleration of 30 meters/sec/sec, or three times the force of grav-
ity. If sustained, this would launch a satellite into orbit in about seven minutes, and
put us in a plane’s luggage rack if our seat belts weren’t fastened. It is also striking
that near zero acceleration is found between these peaks.
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Fig. 8.6 The acceleration along the pen trajectory for all 50 replications of the script in Figure 1.9
before and after registration.

8.7 Details for Functions landmarkreg and register.fd

8.7.1 Function landmarkreg

The complete calling sequence for the R version is

landmarkreg(fdobj, ximarks, x0marks=xmeanmarks,
WfdPar, monwrd=FALSE)

The arguments are as follows:

fdobj a functional data object containing the curves to be registered.
ximarks a matrix containing the timings or argument values associated with

the landmarks for the observations in fd to be registered. The number of rows
N equals the number of observations, and the number of columns NL equals
the number of landmarks. These landmark times must be in the interior of the
interval over which the functions are defined.

x0marks a vector of times of landmarks for target curve. If not supplied, the
mean of the landmark times in ximarks is used.

WfdPar a functional parameter object defining the warping functions that trans-
form time in order to register the curves.

monwrd A logical value: if TRUE, the warping function is estimated using a
monotone smoothing method; otherwise, a regular smoothing method is used,
which is not guaranteed to give strictly monotonic warping functions.
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Landmarkreg returns a list with two attributes:

fdreg a functional data object for the registered curves.
warpfd a functional data object for the warping functions.

It is essential that the location of every landmark be clearly defined in each of the
curves as well as the template function. If this is not the case, consider using the con-
tinuous registration function register.fd. Although requiring that a monotone
smoother be used to estimate the warping functions is safer, it adds considerably to
the computation time since monotone smoothing is itself an iterative process. It is
usually better to try an initial registration with this feature to see if there are any fail-
ures of monotonicity. Moreover, monotonicity failures can usually be cured by in-
creasing the smoothing parameter defining WfdPar. Not much curvature is usually
required in the warping functions, so a low dimensional basis, whether B-splines or
monomials, is suitable for defining the functional parameter argument WfdPar. A
registration with a few prominent landmarks is often a good preliminary to using
the more sophisticated but more lengthy process in register.fd.

8.7.2 Function register.fd

The complete calling sequence for the R version is

register.fd(y0fd=NULL, yfd=NULL,
WfdParobj=c(Lfdobj=2, lambda=1),
conv=1e-04, iterlim=20, dbglev=1,
periodic=FALSE, crit=2)

y0fd a functional data object defining the target for registration. If yfd is NULL
and y0fd is a multivariate data object, then y0fd is assigned to yfd and y0fd
is replaced by its mean. Alternatively, if yfd is a multivariate functional data
object andy0fd is missing, y0fd is replaced by the mean of y0fd. Otherwise,
y0fd must be a univariate functional data object taken as the target to which
yfd is registered.

yfd a multivariate functional data object defining the functions to be registered
to target y0fd. If it is NULL and y0fd is a multivariate functional data object,
yfd takes the value of y0fd.

WfdParobj a functional parameter object for a single function. This is used as
the initial value in the estimation of a function W (t) that defines the warping
function h(t) that registers a particular curve. The object also contains informa-
tion on a roughness penalty and smoothing parameter to control the roughness of
h(t). Alternatively, this can be a vector or a list with components named Lfdobj
and lambda, which are passed as arguments to fdPar to create the functional
parameter form of WfdParobj required by the rest of the register.fd algo-
rithm. The default Lfdobj of 2 penalizes curvature, thereby preferring no warp-
ing of time, with lambda indicating the strength of that preference. A common
alternative is Lfdobj = 3, penalizing the rate of change of curvature.
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conv a criterion for convergence of the iterations.
iterlim a limit on the number of iterations.
dbglev either 0, 1, or 2. This controls the amount information printed out on

each iteration, with 0 implying no output, 1 intermediate output level, and 2 full
output. (If this is run with output buffering, it may be necessary to turn off the
output buffering to actually get the progress reports before the completion of
computations.)

periodic a logical variable: if TRUE, the functions are considered to be peri-
odic, in which case a constant can be added to all argument values after they are
warped.

crit an integer that is either 1 or 2 that indicates the nature of the continuous
registration criterion that is used. If 1, the criterion is least squares, and if 2,
the criterion is the minimum eigenvalue of a cross-product matrix. In general,
criterion 2 is to be preferred.

A named list of length 3 is returned containing the following components:

regfd A functional data object containing the registered functions.
Wfd A functional data object containing the functions hW (t) that define the warp-

ing functions h(t).
shift If the functions are periodic, this is a vector of time shifts.

The warping function that smoothly and monotonically transforms the argument
is defined by Wfd is the same as that defines the monotone smoothing function in
for function smooth.monotone. See the help file for that function for further
details.

8.8 Some Things to Try

1. At the end of Chapter 7 we suggested a principal components analysis of the log
of the first derivative of the growth curves. This was, of course, before registra-
tion. Now repeat this analysis for the registered growth curves, and compare the
results. What about the impact of the pubertal growth spurt now?

2. Try applying continuous registration to the unregistered growth curves. You will
see that a few curves are badly misaligned, indicating that there are limits to how
well continuous registration works. What should we do with these mis-aligned
curves? Could we try, for example, starting the continous registrations off with
initial estimates of function Wfd set up from the landmark registered results?

3. Using only those girls whose curves are well registered by continuous registra-
tion, now use canonical correlation analysis to explore the covariation between
the Wfd object returned by function register.fd, which is the log of the first
derivative of the warping functions hi(t), and the Wfd object from the monotone
smooth. Look for interesting ways in which the amplitude variation in growth is
related to its the phase variation.
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4. Medfly Data: In Section 7.7, we suggested applying Principal Components
Analysis to the medfly data. Here, we suggest you extend that analysis as fol-
lows:

a. Perform a functional linear regression to predict the total lifespan of the fly
from their egg laying. Choose a smoothing parameter by cross validation, and
plot the coefficient function along with confidence intervals.

b. Conduct a permutation test for the significance of the regression. Calculate
the R2 for your regression.

c. Compare the results of the functional linear regression with the linear regres-
sion on the principal component scores from your analysis in Section 7.7.

8.9 More to Read

The classic paper on the estimation of time warping functions is Sakoe and Chiba
(1978), who used dynamic programming to estimate the warping function in a con-
text where there was no need for the warping function to be smooth.

Landmark registration has been studied in depth by Kneip and Gasser (1992)
and Gasser and Kneip (1995), who refer to a landmark as a structural feature, its
location as a structural point, to the distribution of landmark locations along the
t axis as structural intensity, and to the process of averaging a set of curves after
registration as structural averaging. Their papers contain various technical details
on the asymptotic behavior of landmark estimates and warping functions estimated
from them. Another source of much information on the study of landmarks and their
use in registration is Bookstein (1991).

The literature on continuous registration is evolving rapidly, but is still somewhat
technical. Gervini and Gasser (2004) and Liu and Müller (2004) are recent papers
that review the literature and discuss some theoretical issues.



Chapter 9
Functional Linear Models for Scalar Responses

This is the first of two chapters on the functional linear model. Here we have a
dependent or response variable whose value is to be predicted or approximated on
the basis of a set independent or covariate variables, and at least one of these is
functional in nature. The focus here on linear models, or functional analogues of
regression analysis. This chapter is confined to considering the prediction of a scalar
response on the basis of one or more functional covariates, as well as possible scalar
covariates.

Confidence intervals are developed for estimated regression functions in order to
permit conclusions about where along the t axis a covariate plays a strong role in
predicting a functional responses. The chapter also offers some permutation tests of
hypotheses.

More broadly, we begin here the study of input/output systems. This and the next
chapter lead in to Chapter 11 where the response is the derivative of the output from
the system.

9.1 Functional Linear regression with a Scalar response

We have so far focussed on representing a finite number of observations as a func-
tional data object, which can theoretically be evaluated at an infinite number of
points, and on graphically exploring the variation and co-variation of populations of
functions. However, we often need to model predictive relationships between differ-
ent types of data, and here we expect that some this data will be functional.

In classical linear regression, predictive models are often of the form

yi =
p

∑
j=0

xi jβ j + εi, i = 1, . . . ,N (9.1)

that model the relationship between a response yi and covariates xi j as a linear
structure. The dummy covariate with j = 0, which has the value one for all i, is

129
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usually included because origin of the response variable and/or one or more of the
independent variables can be arbitrary, and β0 codes the constant needed to allow
for this. It is often called the intercept term.

The term εi allows for sources of variation considered extraneous, such as mea-
surement error, unimportant additional causal factors, sources of nonlinearity and
so forth, all swept under the statistical rug called error. The εi are assumed to add to
the prediction of the response, and are usually considered to be independently and
identically distributed.

In this chapter we replace at least one of the p observed scalar covariate variables
on the right side of the classical equation by a functional covariate. To simplify
the exposition, though, we will describe a model consisting of a single functional
independent variable plus an intercept term.

9.2 A Scalar Response Model for Log Annual Precipitation

Our test-bed problem in this section is to predict the logarithm of annual precipita-
tion for 35 Canadian weather stations from their temperature profiles. The response
in this case is, in terms of the fda package in R,

annualprec = log10(apply(daily$precav,2,sum))

We want to use as the predictor variable the complete temperature profile as well as
a constant intercept. These two covariates can be stored in a list of length 2, or in
Matlab as a cell array. Here we set up a functional data object for the 35 temperature
profiles, called tempfd. To keep things simple and the computation rapid, we will
use 65 basis functions without a roughness penalty. This number of basis functions
has been found to be adequate for most purposes, and can, for example, capture the
ripples observed in early spring in many weather stations.

tempbasis =create.fourier.basis(c(0,365),65)
tempSmooth=smooth.basis(day.5,daily$tempav,tempbasis)
tempfd =tempSmooth$fd

9.3 Setting Up the Functional Linear Model

But what can we do when the vector of covariate observations xi = (xi1, . . . ,xip) in
(9.1) is replaced by a function xi(t)?

A first idea might be to discretize each of the N functional covariates xi(t) by
choosing a set of times t1, . . . , tq and consider fitting the model

yi = α0 +
q

∑
j=1

xi(t j)β j + εi
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But which times t j are important, given that we must have q < N?
If we choose a finer and finer mesh of times, the summation approaches an inte-

gral equation:

yi = α0 +
∫

xi(t)β (t)dt + εi. (9.2)

We now have a finite number N of observations with which to determine the infinite-
dimensional β (t). This is an impossible problem: it is almost always possible to find
a β (t) so that (9.2) is satisfied with εi = 0. More importantly, there are always an
infinite number of possible regression coefficient functions β (t) that will produce
exactly the same predictions ŷi. Even if we expand each functional covariate in terms
of a limited number of basis functions, it is entirely possible that the total number
of basis functions will exceed or at least approach N.

9.4 Three Estimates of the Regression Coefficient Predicting
Annual Precipitation

Three strategies have been developed to deal with this under-determination issue.
The first two re-define the problem using a basis coefficient expansion of β :

β (t) =
K

∑
k

ckφk(t) = c′φ(t), (9.3)

The third replaces the potentially high dimensional covariate functions by a low-
dimensional approximation using principal components analysis. The first two ap-
proaches will be illustrated using function fRegress. Function fRegress in R
and Matlab requires at least three arguments:

yfdPar This object contains the response variable. It can be a functional param-
eter object, a functional data object, or a simply a vector of N scalar responses.
In this chapter we restrict ourselves to the scalar response situation.

xfdlist This object contains all the functional and scalar covariate functions
used to predict the response using the linear model. Each covariate is an element
or attribute in a list object in R, or an entry in a cell array in Matlab.

betalist This is a list object in R or a cell array in Matlab of the same length as
the second argument, and specifies the functional regression coefficient objects.
Because it is possible that any or all of them can be subject to a roughness penalty,
they are all in principle functional parameter objects, although fRegress will by
default convert both functional data objects and basis objects to be functional
parameter objects.

Here we store the two functional data covariates required for predicting log an-
nual precipitation in a list of length two, which we here call templist, to be used
for the argument xfdlist.



132 9 Functional Linear Models for Scalar Responses

templist = vector("list",2)
templist[[1]] = rep(1,35)
templist[[2]] = tempfd

Notice that the intercept term is here set up as a constant function with 35 repli-
cations. It is essential to supply the coefficient matrix as a one by 35 matrix.

9.4.1 Low Dimensional Regression Coefficient Function β

The simplest strategy for estimating β is just to keep the dimensionality K of β in
(9.3) small relative to N.

In our test-bed expansion, we’ll work with five Fourier basis functions for the re-
gression coefficient β multiplying the temperature profiles, and a constant function
for α , the multiplier of the constant intercept covariate set up above.

conbasis = create.constant.basis(c(0,365))
betabasis = create.fourier.basis(c(0,365),5)
betalist = vector("list",2)
betalist[[1]] = conbasis
betalist[[2]] = betabasis

Now we can call function fRegress, which returns various results in a list object
that we call fRegressList.

fRegressList = fRegress(annualprec,templist,betalist)

The command names(fRegressList) reveals an attribute betaestlist
containing the estimated regression coefficient functions. Each of these is a func-
tional parameter object. We can plot the estimate of the regression function for the
temperature profiles with the commands

betaestlist = fRegressList$betaestlist
tempbetafd = betaestlist[[2]]$fd
plot(tempbetafd, xlab="Day", ylab="Regression Coef.")

Figure 9.1 shows the result. The intercept term can be obtained from
coef(betaestlist[[1]]); its value in this case is 0.0095. We’ll defer com-
menting on these estimates until we consider the next more sophisticated strategy.

We need to assess the quality of this fit. First, let’s extract the fitted values defined
by this model, and compute the residuals. We’ll also compute error sums of squares
associated with the fit as well as for the fit using only a constant or intercept.

annualprechat = fRegressList$yhatfdobj
annualprecres = annualprec - annualprechat
SSE1 = sum(annualprecresˆ2)
SSE0 = sum((annualprec - mean(annualprec))ˆ2)
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Fig. 9.1 Estimated β (t) for predicting log annual precipitation from average daily temperature
using five Fourier basis functions.

We can now compute the squared multiple correlation and the usual F-ratio for
comparing these two fits.

RSQ = (SSE0-SSE1)/SSE0
Fratio = ((SSE0-SSE1)/5)/(SSE1/29)

The squared multiple correlation is 0.80, and the corresponding F-ratio with 5 and
29 degrees of freedom is 22.6, suggesting a fit to the data that is far better than we
would expect by chance.

9.4.2 Coefficient β Estimate Using a Roughness Penalty

There are two ways to obtain a smooth fit. The simplest is to use a low-dimensional
basis for β (t). However, we can get more direct control over what we mean by
“smooth” by using a roughness penalty. The combination of a high dimensional
basis with a roughness penalty reduces the possibilities that either (a) important
features are missed or (b) extraneous features forced into the image by using a basis
set that is too small for the application.

Suppose, for example, that we fit (9.2) by minimizing the penalized sum of
squares

PENSSEλ (α0,β ) = ∑[yi−α0−
∫

xi(t)β (t)dt]2 +λ
∫

[Lβ (t)]2dt. (9.4)
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This allows us to shrink variation in β as close as we wish to the solution of the dif-
ferential equation Lβ = 0. Suppose, for example, that we are working with periodic
data with a known period. As noted with expression (5.11), the use of a harmonic
acceleration operator

Lβ = (ω2)Dβ +D3β ,

places no penalty on a simple sine wave and increases the penalty on higher or-
der harmonics in a Fourier approximation approximately in proportion to the sixth
power of the order of the harmonic. (In this expression, ω is determined by the pe-
riod, which is assumed to be known.) Thus, increasing the penalty λ in (9.4) forces
β to look more and more like β (t) = c1 + c2 sin(ωt)+ c3 cos(ωt).

More than one functional co-variate can be incorporated into this model and
scalar covariates may also be included. Let us suppose that, in addition to yi, we
have measured p scalar covariates zi = (zi1, . . . ,zip) and q functional covariates
xi1(t), . . . ,xiq(t). We can put these into a linear model as follows

yi = α0 + z′iα +
q

∑
j=1

∫
xi j(t)β j(t)dt + εi, (9.5)

where zi is the p− vector of scalar covariates. A separate smoothing penalty may
be employed for each of the β j(t), j = 1, . . . ,q.

Using (9.5), we can define a least squares estimate as follows. We define Z by:

Z =




z′1
∫

x11(t)Φ1(t)dt · · · ∫
x1q(t)Φq(t)

...
...

z′n
∫

xn1(t)Φ1(t)dt · · · ∫
xnq(t)Φq(t)




Here Φk is the basis expansion used to represent βk(t). We also define a penalty
matrix

R =




0 · · · · · · · · ·
0 λ1R1 · · · 0
...

...
. . .

...
0 · · · λqRq




where Rk is the penalty matrix associated with the smoothing penalty for βk and λk
is the corresponding smoothing parameter. With these objects, we can define

b̂ =
(
Z′Z+R

)−1 Z′y

to hold the vector of estimated coefficients α̂ along with the coefficients defining
each estimated coefficient function β̂k(t) estimated by penalized least squares. These
are then extracted to form the appropriate functional data objects.

Now let us apply this approach to predicting the log annual precipitations. First,
we set up a harmonic acceleration operator, as we did already in Chapter 5.

Lcoef = c(0,(2*pi/365)ˆ2,0)
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harmaccelLfd = vec2Lfd(Lcoef, c(0,365))

Now we replace our previous choice of basis for defining the β estimate by a func-
tional parameter object that incorporates both this roughness penalty, and a level of
smoothing:

betabasis = create.fourier.basis(c(0, 365), 35)
lambda = 10ˆ12.5
betafdPar = fdPar(betabasis, harmaccelLfd, lambda)
betalist[[2]] = betafdPar

These now allow us to invoke fRegress to return the estimated functional coeffi-
cients and predicted values:

annPrecTemp = fRegress(annualprec, templist,
betalist)

betaestlist = annPrecTemp$betaestlist
annualprechat = annPrecTemp$yhatfdobj

The command print(fRegressList$df) indicates the degrees of freedom
for this model, including the intercept, is 3.7, somewhat below the value of 6 that
we used for the simple model above.

Now we compute the usual R2 and F-ratio statistics to assess the improvement
in fit achieved by including temperature as a covariate.

SSE1 = sum((annualprec-annualprechat)ˆ2)
RSQ = (SSE0 - SSE1)/SSE0
Fratio = ((SSE0-SSE1)/3.7)/(SSE1/30.3)

The squared multiple correlation is now 0.75, a small drop from the value for the
simple model, due partly to using few degrees of freedom. The F-ratio is 25.1 with
3.7 and 30.3 degrees of freedom, and is even more significant that for the simple
model. Figure 9.2 compares predicted and observed values of log annual precipita-
tion. Figure 9.3 plots the coefficient β (t) along with the confidence intervals derived
below. Comparing this version with that in Figure 9.1 shows why the roughness
penalty approach is to be preferred over the fixed low dimension strategy; now we
see that only the autumn months really matter in defining the relationship, and that
the substantial oscillations over other parts of the year in Figure 9.1 are actually
extraneous.

To complete the picture, we should ask whether we couldn’t do just as well with
a constant value for β . Here we use the constant basis, run fRegress, and redo the
comparison using this fit as a benchmark. The degrees of freedom for this model is
now 2.

betalist[[2]] = fdPar(conbasis)
fRegressList = fRegress(annualprec, templist,

betalist)
betaestlist = fRegressList$betaestlist

Now we compute the test statics for comparing these models.
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annualprechat = fRegressList$yhatfdobj
SSE0 = sum((annualprec-annualprechat)ˆ2)
RSQ = (SSE0 - SSE1)/SSE0
Fratio = ((SSE0-SSE1)/1)/(SSE1/33)

We find that R2 = 0.52 and F = 35.8 for 1 and 33 degrees of freedom, so that
the contribution of our model is also important relative to this benchmark. That is,
functional linear regression is the right choice here.
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Fig. 9.2 Observed log annual precipitation values plotted against values predicted by functional
linear regression on temperature curves using a roughness penalty.

9.4.3 Choosing Smoothing Parameters

How did we come up with λ = 1012.5 for the smoothing parameter in this analysis?
Although smoothing parameters λ j can be certainly be chosen subjectively, we can
also consider cross-validation as a way of using the data to define smoothing level.
To define a cross-validation score, we let α(−i)

λ and β (−i)
λ be the estimated regression

parameters estimated without the ith observation. The cross-validation score is then

CV(λ ) =
N

∑
i=1

[
yi−α(−i)

λ −
∫

xi(t)β
(−i)
λ dt

]2

. (9.6)

Observing that
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Fig. 9.3 Estimate β (t) for predicting log annual precipitation from average daily temperature with
a harmonic acceleration penalty and smoothing parameter set to 1012.5. The dashed lines indicate
point-wise 95% confidence limits for values of β (t).

ŷ = Z
(
Z′Z+R

)−1 Z′y = Hy

standard calculations give us that

CV(λ ) =
N

∑
i=1

(
yi− ŷi

1−Hii

)2

. (9.7)

We can similarly define a generalized cross-validation score:

GCV(λ ) = ∑n
i=1 (yi− ŷi)

2

(n−Tr(H))2 (9.8)

These quantities are returned by fRegress for scalar responses only. This
GCV(λ ) was discussed (in different notation) in Section 5.2.5 above. For a com-
parison of CV and GCV including reference to more literature, see Section 21.3.4,
p. 368, in Ramsay and Silverman (2005).

The following code generates the data plotted in Figure 9.4.

loglam = seq(5,15,0.5)
nlam = length(loglam)
SSE.CV = matrix(0,nlam,1)
for (ilam in 1:nlam) {
lambda = 10ˆloglam[ilam]
betalisti = betalist
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betafdPar2 = betalisti[[2]]
betafdPar2$lambda = lambda
betalisti[[2]] = betafdPar2
SSE.CV[ilam] = fRegress(annualprec, templist,

betalisti)$OCV
}
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Fig. 9.4 Cross-validation scores CV(λ ) for fitting log annual precipitation by daily temperature
profile, with a penalty on the harmonic acceleration of β (t).

9.4.4 Confidence Intervals

Once we have conducted a functional linear regression, we want to measure the pre-
cision to which we have estimated each of the β̂ j(t). This can be done in the same
manner as confidence intervals for probes in smoothing. Under the usual indepen-
dence assumption, the εi are independently normally distributed around zero with
variance σ2

e . The covariance of ε is then

Σ = σ2
e I

Following a δ -method calculation, the sampling variance of the estimated parameter
vector b̂ is
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Var
[
b̂
]
=

(
Z′Z+R

)−1 Z′ΣZ
(
Z′Z+R

)−1
.

Naturally, any more general estimate of Σ , allowing correlation between the errors,
can be used here.

We can now obtain confidence intervals for each of the β j(t). To do this, we need
an estimate of σ2

e . This can be obtained from the residuals. The following code does
the trick in R:

resid = annualprec - annualprechat
SigmaE = sum(residˆ2)/(35-fRegressList$df)
SigmaE = SigmaE*diag(rep(1,35))
y2cMap = smoothList$y2cMap
stderrList = fRegress.stderr(fRegressList, y2cMap,

SigmaE)

We can then plot the coefficient function β (t) along with plus and minus two times
it’s standard error to obtain the approximate confidence bounds in Figure 9.3:

betafdPar = betaestlist[[2]]
betafd = betafdPar$fd
betastderrList = stderrList$betastderrlist
betastderrfd = betastderrList[[2]]
plot(betafd, xlab="Day", ylab="Regression Coef.",

ylim=c(-6e-4,1.2e-03), lwd=2)
lines(betafd+2*betastderrfd, lty=2, lwd=1)
lines(betafd-2*betastderrfd, lty=2, lwd=1)

We note that, like the confidence intervals that we derived for probes, these intervals
are given point-wise and do not take account of bias or of the choice of smoothing
parameters. In order to provide tests for the over-all effectiveness of the regression
we resort to permutation tests described in Section 9.5 below.

9.4.5 Scalar Response Models by Functional Principal
Components

A third alternative for functional linear regression with a scalar response is to regress
y on the principal component scores for functional covariate. The use of principal
components analysis in multiple linear regression is a standard technique:

1. perform a principal components analysis on the covariate matrix X and derive the
principal components scores fi j for each observation i on each principal compo-
nent j.

2. regress the response yi on the principal component scores ci j.

We often observe that we need only the first few principal component scores, thereby
considerably improving the stability of the estimate by increasing the degrees of
freedom for error.
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In functional linear regression, we consider the scores resulting from a functional
principal components analysis of the temperature curves conducted in Chapter 7. We
can write

xi(t) = x̄(t)+ ∑
j>=0

ci jξ j(t).

Regressing on the principal component scores gives us the following model:

yi = β0 +∑ci jβ j + εi. (9.9)

Now we recall that ci j =
∫

ξ j(t)(xi(t)− x̄(t))dt. If we substitute this in (9.9) we can
see that

yi = β0 +
∫

∑β jξ j(t)(xi j(t)− x̄(t))dt + εi.

This gives us
β (t) = ∑β jξ j(t).

Thus, (9.9) expresses exactly the same relationship as (9.2) when we absorb the
mean function into the intercept:

β̃0 = β0−
∫

β (t)x̄(t)dt.

The following code carries out this idea for the annual cycles in daily tempera-
tures at 35 Canadian weather stations. First we re-smooth the data using a saturated
basis with a roughness penalty. This represents rather more smoothing than in the
earlier version of tempfd that did not use a roughness penalty.

daybasis365=create.fourier.basis(c(0, 365), 365)
lambda =1e6
tempfdPar =fdPar(daybasis365, harmaccelLfd, lambda)
tempfd =smooth.basis(day.5, daily$tempav,

tempfdPar)$fd

Next we perform the principal components analysis, again using a roughness
penalty.

lambda = 1e0
tempfdPar = fdPar(daybasis365, harmaccelLfd, lambda)
temppca = pca.fd(tempfd, 4, tempfdPar)
harmonics = temppca$harmonics

Approximate point-wise standard errors can now be constructed out of the co-
variance matrix of the β j:

var[β̂ (t)] = [ξ1(t) . . . ξk(t)]Var [β ]




ξ1(t)
...

ξk(t)



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Since the coefficients are orthogonal, the covariance of the β j is diagonal and can be
extracted from the standard errors reported by lm. When smoothed principal com-
ponents are used, however, this orthogonality no longer holds and the full covariance
must be used.

The final step is to do the linear model using principal component scores, and
construct the corresponding functional data objects for the regression functions.

pcamodel = lm(annualprec˜temppca$scores)
pcacoefs = summary(pcamodel)$coef
betafd = pcacoefs[2,1]*harmonics[1] +

pcacoefs[3,1]*harmonics[2] +
pcacoefs[4,1]*harmonics[3]

coefvar = pcacoefs[,2]ˆ2
betavar = coefvar[2]*harmonics[1]ˆ2 +

coefvar[3]*harmonics[2]ˆ2 +
coefvar[4]*harmonics[3]ˆ2

The quantities resulting from the code below are plotted in Figure 9.5. In this
case the R-squared statistic is similar to the previous analysis at 0.72.

plot(betafd, xlab="Day", ylab="Regression Coef.",
ylim=c(-6e-4,1.2e-03), lwd=2)

lines(betafd+2*sqrt(betavar), lty=2, lwd=1)
lines(betafd-2*sqrt(betavar), lty=2, lwd=1)
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Fig. 9.5 Estimate β (t) for predicting log annual precipitation from average daily temperature us-
ing scores from the first three functional principal components of temperature. The dashed lines
indicate point-wise 95% confidence limits for values of β (t).
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Functional linear regression by functional principal components has been studied
extensively. Yao et al. (2005) observes that instead of pre-smoothing the data, we
can estimate the covariance surface directly by a two-dimensional smooth and use
this to derive the fPCA. From here the principal component scores can be calculated
by fitting the principal component functions to the data by least squares. This can
be advantageous when some curves are sparsely observed.

9.5 Statistical Tests

So far, our tools have concentrated on exploratory analysis. We have developed
approximate point-wise confidence intervals for functional coefficients, but have not
attempted to formalize these into test statistics. Hypothesis tests provide a formal
criterion for judging whether a scientific hypothesis is valid. They also perform the
useful function of allowing us to assess “What would the results look like if there
really were no relationship in the data?”.

Because of the nature of functional statistics, it is difficult to attempt to derive
a theoretical null distribution for any given test statistic since we would need to
account for selecting a smoothing parameter as well as the smoothing itself. Instead,
the package employs a permutation test methodology. This involves constructing a
null distribution from the observed data directly. If there is no relationship between
the response and the covariates, it should make no difference if we randomly re-
arrange the way they are paired. To see what a result might look in this case, we
can simply perform the experiment of re-arranging the vector of responses while
keeping the covariates in the same order and trying to fit the model again. The
advantage of this is that we no longer need to rely on distributional assumptions.
The disadvantage is that we cannot test for the significance of an individual covariate
among many.

In order to turn this idea into a formalized statistical procedure, we need a way of
determining that the result we get from the observed data is different from what is
obtained by re-arranging the response vector. We do this in the classical manner, by
deciding on a test statistic that measures the strength of the predictive relationship in
our model. We now have a single number which we can compare to the distribution
that is obtained when we calculate the same statistic with a randomly permuted
response. If the observed test statistic is in the tail of this distribution, we conclude
that there is a relationship between the response and covariates.

In our case, we compute an F statistic for the regression:

F =
Var[ŷ]

1
n ∑(yi− ŷi)2

where ŷ is the vector of predicted responses. This statistic varies from the classical
F statistic in the manner in which it normalizes the numerator and denominator
sums of squares. The statistic is calculated several hundred times using a different
random permutation each time. The p-value for the test can then be calculated by
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counting the proportion of permutation F values that are larger than the F statistic
for the observed pairing.

The following code implements this procedure for the Canadian weather exam-
ple:

F.res = Fperm.fd(annualprec, templist, betalist)

Here the observed F-statistic (stored in F.res$Fnull) is 3.03 and whereas 95th
quartile of the permutation distribution (F.res$qval) is 0.26, giving strong evi-
dence for the effect.

9.6 Some Things to Try

1. Medfly Data
We re-consider the medfly data described in Section 7.7.

a. Perform a functional linear regression to predict the total lifespan of the fly
from their egg laying. Choose a smoothing parameter by cross validation, and
plot the coefficient function with confidence intervals.

b. What is the R2 of your fit to these data? How does this compare with that for
the principal components regression you tried earlier?

c. Construct confidence intervals for the coefficient function obtained using prin-
cipal components regression. How do these compare to that for your estimates
found using fRegress? Experiment with increasing the smoothing param-
eter in fRegress and the number of components for principal components
regression.

d. Conduct a permutation test for the significance of the regression. Calculate
the R2 for your regression.

2. Tecator Data The Tecator data in the FDA library provides an example of func-
tional data in which the domain of the function is not time. Instead, we observe
the spectra of meat samples from which we would like to determine a number
of chemical components. In particular, the moisture content of the meat is of
interest.

a. Represent the spectra using a reasonable basis and smoothing penalty.
b. Experiment with functional linear regression using these spectra as covariates

for the regression model. Plot the coefficient function along with confidence
intervals. What is the R2 for your regression?

c. Try using the derivative of the spectrum to predict moisture content. What
happens if you use both the derivative and the original spectrum?

3. Diagnostics Residual diagnostics for functional linear regression is a largely un-
explored area. Here are some suggestions for checking regression assumptions
for one of the models suggested above.
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a. Residual by predicted plots can still be constructed, as can QQ plots for resid-
uals. Do these tell you anything about the data?

b. In linear regression, we look for curvature in a model by plotting residuals
against covariates. In functional linear regression, we would need to plot resid-
uals against the predictor value at each time t. Experiment with doing this at
a fine grid of t. Alternatively, you can plot these as lines in three dimensional
space using the lattice or rgl package.

c. Do any points concern you as exhibiting undue influence? Consider remov-
ing them and measure the effect on your model. One way to get an idea of
influence is the integrated squared difference in the βi(t) coefficients. You can
calculate this using the inprod function.

9.7 More to Read

Functional linear regression for scalar responses has a large associated literature.
Models based on functional Principal Components Analysis are found in Cardot
et al. (1999), Cardot et al. (2003) and Yao et al. (2005). Tests for no effect are
developed in Cardot et al. (2004, 2003) and Delsol, Ferraty and Vieu (2008). More
recent work by James and Zhu (2007) has focussed on using absolute value penalties
to insist that β (t) be zero or exactly linear over large regions.

Escabias et al. (2004) and James (2002) look at the larger problem of how to
adapt the generalized linear model to the presence of a functional predictor vari-
able. Müller and Stadtmüller (2005) also investigate that they call the generalized
functional linear model. James and Hastie (2001) consider linear discriminant anal-
ysis where at one of the of independent variables used for prediction is a function,
and where the curves are irregularly sampled.



Chapter 10
Linear Models for Functional Responses

In this second chapter on the functional linear model, the dependent or response
variable is functional. We first consider a situation in which all of the independent
variables are scalar and in particular look at two functional analyses of variance.

When one or more of the independent variables is also function, we have two
possible classes of linear models. The simpler case is called concurrent, where
the value of the response variable y(t) is predicted solely by the values of one or
more functional covariates at the same time t. The more general case where where
functional variables contribute to the prediction for all possible time values s is
briefly reviewed.

10.1 Functional Responses and an Analysis of Variance Model

While we often find functional covariates associated with scalar responses, there are
also cases where the interest lies in the prediction of a functional response. We begin
this chapter with two examples of functional analysis of variance (fANOVA), where
variation in a functional response is decomposed into functional effects through the
use of a scalar design matrix Z. That is, in both of these examples, the covariates
are all scalar.

10.1.1 Climate Region Effects on Temperature

In the Canadian weather data, for example, we can divide the weather stations into
four distinct groups: Atlantic, Pacific, Prairie and Arctic. It may be interesting to
know the effect of geographic location on the shape of the temperature curves. That
is, we have a model of the form

145
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yi(t) = β0(t)+
4

∑
j=1

xi jβ j(t)+ εi(t) (10.1)

where yi(t) is a functional response. In this case, the values of xi j are either 0 or 1.
If the 35 by 5 matrix Z contains these values, then the first column has all entries
equal to one, and codes the contribution the Canadian mean temperature, and the
remaining four columns contain 1 if that weather station is in the corresponding
climate zone and 0 otherwise. In order to identify the specific effects of the four
climate zones, we have to add the constraint

4

∑
j=1

β j(t) = 0 for all t. (10.2)

There are a number of methods of imposing this constraint, and in this example we
will do this by adding the above equation as an additional 36th “observation” for
which y36(t) = 0.

We first create a list containing five indicator variables for the intercept term and
each of the regions. In this setup, the intercept term is effectively the Canadian mean
temperature curve, and each of the remaining regression coefficients is the pertur-
bation of the Canadian mean required to fit a region’s mean temperature. These
indicator variables are stored in the List object regionList.

regions = unique(CanadianWeather$region)
p = length(regions) + 1
regionList = vector("list", p)
regionList[[1]] = c(rep(1,35),0)
for (j in 2:p) {
xj = CanadianWeather$region == regions[j-1]
regionList[[j]] = c(xj,1)

}

The next step is to augment the temperature functional data object by a 36th obser-
vation that takes only zero values as required by (10.2).

coef = tempfd$coef
coef36 = cbind(coef,matrix(0,65,1))
temp36fd = fd(coef36,tempbasis,tempfd$fdnames)

We now create functional parameter objects for each of the coefficient functions,
using 11 fourier basis functions for each.

betabasis = create.fourier.basis(c(0, 365), 11)
betafdPar = fdPar(betabasis)
betaList = vector("list",p)
for (j in 1:p) betaList[[j]] = betafdPar

Now call fRegress, extract the coefficients and plot them, along with the pre-
dicted curves for the regions.
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fRegressList = fRegress(temp36fd, regionList,
betaList)

betaestList = fRegressList$betaestlist
regionFit = fRegressList$yhatfd
regions = c("Canada", regions)
par(mfrow=c(2,3),cex=1)
for (j in 1:p) plot(betaestList[[j]]$fd, lwd=2,

xlab="Day (July 1 to June 30)",
ylab="", main=regions[j])

plot(regionFit, lwd=2, col=1, lty=1,
xlab="Day", ylab="",
main="Prediction")

The five regression coefficients are shown in Figure 10.1, the final panel shows
the predicted mean temperature curves for each of the four regions.

0 200

−1
5

−5
5

15

Canada

Day (July 1 to June 30)

0 200

4
5

6
7

Atlantic

Day (July 1 to June 30)

0 200

−4
−2

0
2

Continental

Day (July 1 to June 30)

0 200

2
6

10
14

Pacific

Day (July 1 to June 30)

0 200

−1
8

−1
4

−1
0

−6

Arctic

Day (July 1 to June 30)

0 200

−3
0

−1
0

10

Prediction

Day (July 1 to June 30)

Fig. 10.1 The regression coefficients estimated for predicting temperature from climate region.
The first panel is the intercept coefficient, and corresponds to the Canadian mean temperature. The
last panel contains the predicted mean temperatures for the four regions.

10.1.2 Trends in Sea Bird Populations on Kodiak Island

Zwiefelhofer, Reynolds and Keim (2008) reported a census of 13 species of sea birds
in two bays on Kodiak Island, Alaska, taken from 1991 to 2005, excluding 1998
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when the boat was in a dry dock. This arduous project was initiated by D. Forsell
and P. Gould in 1979, and the actual surveys were conducted by D. Zwiefelhofer and
the Kodiak National Wildlife Refuge. The counts of birds that we analyze here were
recorded at two sites, called Uyak and Uganik, respectively. Each year the counts
were taken over a set of fixed transects, and the data that we analyze are these counts
averaged over transects.

We first analyze the time-trend in the smoothed base 10 log mean counts as af-
fected by the type of feed. Figure 10.2 shows the base 10 logarithms of counts of
the 13 species averaged over transects and sites.
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Fig. 10.2 The base 10 logarithms of sea bird counts on Kodiak Island averaged over transects and
sites.

The bird species were divided into those who fed primarily on fish and those who
fed mainly on shellfish and molluscs, we call this the feed factor. Birds are nested
within the feed factor, and counts vary greatly over species, so that we cannot treat
birds as a replication factor. The scientists were, however, comfortable with ignoring
site effects and concentrating on whether there was a feed factor effect, so we use
site as the replication factor in this investigation.

First, we define a dummy variable for the feed effects, followed by a dummy
variable for the bird effect within the first feed effect level.

fooddummy = matrix(0,13,1)
foodindex = c(1,2,5,6,12,13)
fooddummy[foodindex] = 1
fooddummy = rbind(fooddummy, fooddummy)
birddummy = diag(rep(1,13))
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Next we set up the design matrix, including two rows constraining bird effects to
sum to zero within each feeding group. The first column codes the effect of the
intercept or constant term µ , the second two code the food effects, and the final 13
code the bird effects.

Zmat = matrix(0,28,15)
Zmat[1:26,1] = rep(1,26)
Zmat[1:26,2] = fooddummy
Zmat[ 1:13,3:15] = birddummy
Zmat[14:26,3:15] = birddummy
Zmat[27, foodindex+2 ] = 1
Zmat[28,-(foodindex+2)] = 1

We also add the corresponding zero functions to the response function, logbirdfd.

logbirdcoef = logbirdfd$coefs
logbirdcoef0 = cbind(logbirdcoef,

matrix(0,nbirdbasis,2))
logbirdfd0 = fd(logbirdcoef0,birdbasis)

Now we set up the arguments for fRegress. We only want constants for the
bird effects since degrees of freedom for error are important to conserve for these
data. However, for both the intercept and the food effect, we use a B-spline basis.

p = 15
xfdlist = vector("list",p)
for (j in 1:p) xfdlist[[j]] = Zmat[,j]
betalist = vector("list",p)
foodbasis = create.bspline.basis(c(0,19),5)
betalist[[1]] = fdPar(foodbasis)
betalist[[2]] = fdPar(foodbasis)
birdbasis = create.constant.basis(c(0,19))
for (j in 3:p) betalist[[j]] = fdPar(birdbasis)

Next we fit the model using fRegress, which involves first defining lists for
both the covariates (in this case all scalar) and a list of low-dimensional regression
functions.

fRegressList = fRegress(logbirdfd0,xfdlist,betalist)
betaestlist = fRegressList$betaestlist
yhatfdobj = fRegressList$yhatfdobj

We see the trend in the intercept in the top panel of Figure 10.3, which effectively
models the trend of the fish-eating birds. It is apparent that in recent years there has
been a leveling off or even possibly a decline among these birds. The bottom panel,
however, shows a steady downward trend in the effect of being a crustacean/mollusc
eater, and when this is combined with the top panel, suggests that this class of sea
bird is declining. The estimation of confidence regions such as those shown in the
Figure is discussed in Section 10.2.2.
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Fig. 10.3 The intercept and feed effects for the bird data along with point-wise 95% confidence
intervals.

10.1.3 Choosing Smoothing Parameters

As for scalar response models, we would like to have a criterion for choosing any
smoothing parameters that we use. Unfortunately, while ordinary cross validation
can be calculated for scalar response models without repeatedly re-estimating the
model, this can no-longer be done efficiently in the case of functional response
models. Instead, the function fRegress.CV can be used, although it requires con-
siderably more time. As a score, we consider the cross validated integrated squared
error:

CVISE(λ ) =
N

∑
i=1

∫ (
yi(t)− ŷ(−i)

i (t)
)2

dt

where y(−i)(t) is the predicted value for yi(t) when it is omitted from the estimation.
In the following code, we search over a range of values for λ applied to both the
intercept and the food effect. Because the final two observations are zero functions
included to make the model identifiable, we use the CVobs argument to exclude
them from being cross-validated. From Figure 10.4 we see that the optimal value of
λ is around 10−0.5.

loglam = seq(-2,0,0.25)
SSE.CV = rep(0,length(loglam))
betafdPari = betafdPar
for(i in 1:length(loglam)){
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betafdPari$lambda = 10ˆloglam[i]
betalisti = betalist
for (j in 1:2) betalisti[[j]] <- betafdPari
SSE.CV[i] <- fRegress.CV(logbirdfd0, xfdlist,

betalisti,CVobs=1:26)$SSE.CV
}
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Fig. 10.4 The cross-validated integrated squared error for the bird data. We find a minimum at
λ = 10−0.5.

10.2 Functional Responses with Functional Predictors: The
Concurrent Model

We can extend (10.1) to allow for functional covariates as follows:

yi(t) = β0(t)+
q−1

∑
j=1

xi j(t)β j(t)+ εi(t) (10.3)

where xi j(t) may be a functional observation. Of course, xi j may also be a scalar
observation or a categorical indicator, in which case it can be simply interpreted as
a function that is constant over time. Model (10.3) is called concurrent because it
only relates the value of yi(t) to the value of xi j(t) at the same time points t. The
intercept function β0(t) in effect multiplies a scalar covariate whose value is always



152 10 Linear Models for Functional Responses

one, and captures the variation in the response that does not depend on any of the
covariate functions.

10.2.1 Estimation for the Concurrent Model

As in ordinary regression, we must worry about redundancy or multi-collinearity
among the intercept and the functional (and scalar if present) covariates. Multi-
collinearity brings a host of problems, including imprecision in estimates due to
rounding error, difficulty in discerning which covariates play an important role in
predicting the dependent variable, and instability in regression coefficient estimates
due to trade-offs between covariates in predicting variation in the dependent vari-
able. When more than one functional covariate is involved, multi-collinearity is of-
ten referred to as concurvity.

To better understand the multi-collinearity problem, we look more closely at how
the functional regression coefficients β j are estimated by function fRegress by
reducing the problem down to the solution of a set of linear equations. The coeffi-
cient matrix defining this linear system can then be analyzed to detect and diagnose
problems with ill-conditioning and curvilinearity.

Let the N by q functional matrix Z contain these xi j functions, and let the vector
coefficient function β of length q contain each of the regression functions. The
concurrent functional linear model in matrix notation is then

y(t) = Z(t)β (t)+ ε(t) , (10.4)

where y is a functional vector of length N containing the response functions. Let

r(t) = y(t)−Z(t)β (t)

be the corresponding N-vector of residual functions. The weighted regularized fit-
ting criterion is

LMSSE(β ) =
∫

r(t)′r(t)dt +
p

∑
j

λ j

∫
[L jβ j(t)]2 dt. (10.5)

Let regression function β j have the expansion

β j(t) =
K j

∑
k

bk jθk j(t) = θ j(t)′b j

in terms of K j basis functions θk j. In order to express (10.4) and (10.5) in matrix no-
tation referring explicitly to these expansions, we need to construct some composite
or super matrices.
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Defining Kβ = ∑q
j K j, we first construct vector b of length Kβ by stacking the

vectors vertically, that is,
b = (b′1,b

′
2, . . . ,b

′
q)
′ .

Now assemble q by Kβ matrix function Θ(t) as follows:

Θ(t) =




θ 1(t)′ 0 · · · 0
0 θ 2(t)′ · · · 0
...

... · · · ...
0 0 · · · θ q(t)′


 . (10.6)

We can now write down the normal equations weighted least squares solution for
the composite coefficient vector b̂:

[
∫

Θ ′(t)Z′(t)Z(t)Θ(t)dt +R]b̂ = [
∫

Θ ′(t)Z′(t)y(t)dt] . (10.7)

This a linear matrix equation defining the scalar coefficients in vector b̂, Cb̂ = d,
where the coefficient matrix is

C =
∫

Θ ′(t)Z′(t)Z(t)Θ(t)dt +R , (10.8)

and the right hand side vector of the system is

d =
∫

Θ ′(t)Z′(t)y(t)dt . (10.9)

Multi-collinearity or curvilinearity arises when the coefficient matrix C is nearly
singular, and the sources of the collinearity can often be deduced from the eigen-
vectors associated with its near zero eigenvalues. Function fRregress returns
both the coefficient matrix and the right side vector, so that these diagnostics can be
readily computed.

These equations are all given in terms of integrals of basis functions with func-
tional data objects. In some cases, it is possible to evaluate them explicitly, but we
will otherwise revert to numerical integration. In practise, numerical integration is
both feasible and accurate.

Concurrent linear models make up an important subset of all possible linear
functional response models, especially for examining dynamics (see Chapter 11).
However they can be particularly restrictive; we discuss the general class of linear
functional response models in Section 10.3.
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10.2.2 Confidence Intervals for Regression Functions

When computing confidence intervals, we must consider the smoothing done in
projecting the observations of the response onto the space spanned by the response
basis functions. When we substitute y(t) = Cφ(t) into (10.7) we get

b̂ = C−1[∫
Θ(t)′Z(t)′Cφ(t)dt

]

= C−1[∫
φ(t)′⊗ (Θ(t)′Z(t)′)dt

]
vec(C)

= c2bMap vec(C) (10.10)

where ⊗ is used to represent the Kronecker product. The explicit use of a basis
expansion for y(t) allows the flexibility of modeling variation in y by itself or of
including the original measurements of each response curve into the variance calcu-
lation.

To develop a variance calculation we now require the matrix y2cMap used to
map the original observations, y, to C, the coefficients used to represent it as an
input to fRegress. We have two options in doing this:

1. Attempt to account for the smoothing steps used to create y(t) as well as the
random variation in y(t) about the functional linear model. In this case, smooth-
ing is carried out by a smoothing matrix which is returned as y2cMap by
smooth.basis when y(t) is created. To use this, each function must be ob-
served at the same time points.

2. Ignore the initial smoothing steps and just account for the variation of the y(t)
about the functional linear model. In this case, we still need to create a y2cMap
object. This can be done by evaluating y(t) at a fine grid of points and creating
the projection matrix of these points onto the basis. Effectively, we pretend the
set of values obtained by evaluating the curves were our original observations. A
simple way to do this is via a call to smooth.basis, imposing zero penalty.

The map c2bMap y2cMap now maps original observations directly to b̂ and we
can use a δ -method to calculate:

Var
[
b̂
]
= c2bMap y2cMap Var [y] y2cMap′ c2bMap′ (10.11)

as a means of creating confidence intervals.
In software, these intervals are created using fRegress.stderr. This re-

quires the result of a call to fRegress along with the matrices y2cMap and
Var [y]. The standard errors for the regression coefficients that we estimated for the
seabird data and that are plotted in Figure 10.3 are computed using the following
code.

The first step is the estimation of Σe, which here will be forced to be diagonal.

yhatmat = eval.fd(plotyear, yhatfdobj)
ymat = eval.fd(plotyear, logbirdfd0)
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rmat = ymat - yhatmat
SigmaE = var(t(rmat))
stddevE = sqrt(diag(SigmaE))
SigmaE = diag(stddevEˆ2)

Next we set up the mapping matrix y2cMap.

birdbasismat = eval.basis(plotyear, birdbasis)
y2cMap = solve(crossprod(birdbasismat)),

t(birdbasismat))

Now we invoke function fRegress.stderr and extract the estimated stan-
dard error functions.

stderrList = fRegress.stderr(fRegressList, y2cMap,
SigmaE)

betastderrlist = stderrList$betastderrlist

Finally we plot the results using the special purpose plotting function plotbeta.

par(mfrow=c(2,1),ask=FALSE)
titlelist = vector("list", p)
titlelist[[1]] = "Intercept"
titlelist[[2]] = "Feed effect"
plotbeta(betaestlist, betastderrlist,

titlelist=titlelist, index=1:2)

10.2.3 Knee Angle Predicted from Hip Angle

The gait data displayed in Figure 1.6 are measurements of angle at the hip and knee
of 39 children as they walk through a single gait cycle. The cycle begins at the point
where the child’s heel under the leg being observed strikes the ground. For plotting
simplicity we run time here over the interval [0,20], since there are 20 times at which
the two angles are observed. This analysis is inspired by the question, “How much
control does the hip angle have over the knee angle?”

Figure 10.5 plots the mean knee angle along with its angular velocity and accel-
eration, and Figure 10.6 plots knee angle acceleration against velocity. We can see
three distinct phases in knee angle of roughly equal durations:

1. From time 0 to 7.5, the leg is bearing the weight of the child by itself, and the
knee is close to being straight. This corresponds to the small loop in the cycle
plot starting just before the marker “1” and up to the cusp.

2. From time 7.5 to time 14.7, the knee flexes in order to lift the foot off the ground,
reaching a maximum mean angle of about 70 degrees.

3. From time 14.7 to time 20, the knee is extended to receive the load at the next
heel-strike.
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Fig. 10.5 Knee angle and its velocity and acceleration over a single gait cycle, which begins when
the heel strikes the ground. The vertical dashed lines separate distinct phases in the cycle.
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Fig. 10.6 A phase-plane plot of knee angle over a gait cycle. Numbers indicate indices of times of
observation of knee angle.
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Together the second and third phases look like straightforward harmonic motion. A
similar analysis of the hip motion reveals only a single harmonic phase. We wonder
how the hip motion is coupled to knee motion.

Starting with functional data objects kneefd and hipfd for knee and hip angle,
respectively, as well as mapping y2cMap, these commands execute a concurrent
functional regression analysis where knee angle is fit by intercept and hip angle
coefficient functions:

xfdlist = list(rep(1,39), hipfd)
betafdPar = fdPar(gaitbasis, harmaccelLfd)
betalist = list(betafdPar,betafdPar)
fRegressList = fRegress(kneefd, xfdlist, betalist)
kneehatfd = fRegressList$yhatfd
betaestlist = fRegressList$betaestlist

The intercept and hip regression coefficient functions are plotted as solid lines in
Figure 10.7.
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Fig. 10.7 The top panel shows as a solid line the intercept term in the prediction of knee angle
from hip angle; the dashed line indicates the mean knee angle assuming no hip angle effect. The
bottom panel shows as a solid line the functional regression coefficient multiplying hip angle in
the functional concurrent linear model, and the dashed line shows the squared multiple correlation
coefficient function associated with this model. Vertical dashed lines indicated boundaries between
the three phases of the gait cycle.

These commands compute the residual variance-covariance matrix estimate,
which we leave as is rather than converting it to a diagonal matrix.

kneemat = eval.fd(gaittime, kneefd)
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kneehatmat = eval.fd(gaittime, kneehatfd)
resmat = kneemat - kneehatmat
SigmaE = cov(t(resmat))

We also set up error sums of square functions for variation about both the model fit
and mean knee angle. Then we compare the two via a squared multiple correlation
function.

kneefinemat = eval.fd(gaitfine, kneefd)
kneemeanvec = eval.fd(gaitfine, kneemeanfd)
kneehatfinemat = eval.fd(gaitfine, kneehatfd)
resmat = kneefinemat - kneehatfinemat
resmat0 = kneefinemat -

kneemeanvec %*% matrix(1,1,ncurve)
SSE0 = apply((resmat0)ˆ2, 1, sum)
SSE1 = apply(resmatˆ2, 1, sum)
Rsqr = (SSE0-SSE1)/SSE0

The R2 function is included in the second panel of Figure 10.7 as a dashed line. We
see that it tracks pretty closely the variation in the hip regression coefficient.

These commands plot the intercept and hip regression coefficients with 95% con-
fidence intervals, shown in Figure 10.8:
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Fig. 10.8 The intercept and hip regression coefficient function for the gait cycle with 95% point-
wise confidence intervals.

fRegressList1 = fRegress(kneefd, xfdlist, betalist,
y2cMap, SigmaE)
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fRegressList2 = fRegress.stderr(fRegressList1,
y2cMap, SigmaE)

betastderrlist = fRegressList2$betastderrlist
titlelist = list("Intercept", "Hip coefficient")
plotbeta(betaestlist, betastderrlist, gaitfine,

titlelist)

We see that hip angle variation is coupled to knee angle variation in the middle of
each of these three episodes, and the relation is especially strong during the middle
flexing phase. It seems logical that a strongly flexed knee is associated with a sharper
hip angle.

We can repeat these analyses to explore the relationship between knee and hip
acceleration. This can be interesting because neural activation of these two muscle
groups produces contraction, and contraction impacts acceleration directly by New-
ton’s Second Law. Figure 10.9 shows the results of doing this. Now it is apparent
that these two angles are coupled at a nearly evenly spaced series of seven points in
the gait cycle. Given that a gait duration can be of the order of a second, it is striking
to compare these plots with those of the handwriting data in Figure 8.6.
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Fig. 10.9 The solid line shows the regression function multiplying hip angle acceleration in the
prediction of knee angle acceleration, and the dashed line indicates the corresponding squared
multiple coerrelation function.
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10.3 Beyond the Concurrent Model

The concurrent linear model only relates the value of a functional response to the
current value of functional covariate(s). A more general version for a single func-
tional covariate and an intercept is

yi(t) = β0(t)+
∫

Ωt

β1(t,s)xi(s)ds+ εi(t). (10.12)

The bivariate regression coefficient function β1(s, t) defines the dependence of yi(t)
on covariate xi(s) at each time t. In this case xi(s) need not be defined over the same
range, or even the same continuum, as yi(t).

Set Ωt in (10.12) contains the range of values of argument s over which xi is
considered to influence response yi at time t, and the subscript t on this set indicates
that this set can change from one value of t to another. For example, when both s and
t are time, using xi(s) to predict yi(t) when s > t may imply backwards causation, so
that only values of xi before time t should be used, and perhaps with some restriction
on how far back in time the influence of xi on yi can happen, so that

Ωt = {s|t−δ ≤ s≤ t} ,

where δ > 0 specifies how much history is relevant to the prediction. Malfait and
Ramsay (2003) described this as the historical linear model.

10.4 A Functional Linear Model for Swedish Mortality

We illustrate the estimation of (10.12) using Swedish life-table data taken from
census records in Sweden. The data are the number of deaths at each age for
women born in each year from 1757 to 1900 and for ages 0 to 80. Figure 10.10
displays the log hazard rates for four selected years. The log hazard rate is the
natural logarithm of the ratio of the number of females who die at a specific age
to the the number of females alive with that age. These data were obtained from
http://mortality.org. See also Chiou and Müller (2008) for another ap-
proach to modeling these data.

The hazard rate is greatest for infants and for the very elderly, and in most years
attains its minimum in the early teens. The four curves indicate that the hazard rate
decreases substantially as the health of the population improves over this period.
However, there are localized features in each curve that reflect various historical
events such as outbreaks of disease, war, and so on. In particular, a strong bump in
mortality starting with the late teenage years and ending in the late thirties in the
1900 curve due to the 1918 flu pandemic.

Let xi(t) represent the log hazard rate at age t for year i. We propose the model
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Fig. 10.10 Log hazard rates as a function of age for Swedish women born in the years 1780, 1820,
1860 and 1900. These data are derived from mortality tables at http://mortality.org.

xi+1(t) = β0(t)+
∫

β1(s, t)xi(t)ds+ εi(t) . (10.13)

That is, for any year from 1758 to 1900, we model the log hazard function for that
year using as the functional covariate the log hazard curve for the preceding year.
Assume that the response curves have been smoothed and represented as functional
data object NextYear, and that the covariate curves are in functional data object
ThisYear.

The regression function β1 has the basis function expansion

β1(s, t) =
K1

∑
k=1

K2

∑̀
=1

bk`φk(s)ψ`(t)

= φ ′(s)Bψ(t), (10.14)

where the coefficients for the expansion are in the K1 by K2 matrix B. We therefore
need to define two bases for β1, as well as a basis for the intercept function β0.

For a bivariate function such as β1(t,s) smoothness can be imposed by penalizing
the s and t directions separately:

PENλt ,λs(β1(t,s)) = λ1

∫
[Ltβ1(t,s)]

2 dsdt +λ2

∫
[Lsβ1(t,s)]

2 dsdt , (10.15)
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where linear differential operator Ls only involves derivatives with respect to s and
Lt only involves derivatives with respect to t. We can also apply a penalty to the
roughness of the intercept β0.

The following code sets up a 23 order 4 B-spline basis functions to be used
for both arguments of β1 as well as for β0, and defines three functional parameter
objects for β0,β1(·, t) and β1(s, ·), respectively. The second derivative is penalized in
each case, but the smoothing parameter values varied as shown. The final statement
assembles these three functional parameter objects into a list object to be supplied
to function linmod as an argument.

betabasis = create.bspline.basis(c(0,80),23)
beta0Par = fdPar(betabasis, 2, 1e-5)
beta1sPar = fdPar(betabasis, 2, 1e3)
beta1tPar = fdPar(betabasis, 2, 1e3)
betaList = list(beta0Par, beta1sPar, beta1tPar)

Function linmod is invoked in R for these data by the command

linmodSmooth = linmod(NextYear, LastYear, betaList)

Figure 10.11 displays the estimated regression surface β1(s, t). The estimated in-
tercept function β0 ranged over values four orders of magnitude smaller than the re-
sponse functions, and can therefore be considered to be essentially zero. The strong
ridge one year off the diagonal, namely β1(s− 1,s), indicates that mortality at any
age is most strongly related to mortality at the previous year for that age less one.
In other words, mortality is most strongly determined by age-specific factors like
infectious diseases in infancy, accidents and violent death in early adulthood, and
aging late in life. The height of the surface declines to near zero for large differences
between s and t for this reason as well.

10.5 Permutation Tests of Functional Hypotheses

As was the case for scalar response models, we have so far focussed on exploratory
analyses. In the context of functional response models, it would again be useful to
gauge the extent to which the estimated relationship can be distinguished from zero.

The type of questions that we are interested in are generalizations of common
statistical tests and of common statistical models:

• Are two or more groups of functions statistically distinguishable?
• Are there statistically significant relationships among functional random vari-

ables?

Since functional data are inherently high dimensional, we again use permutation
testing.
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Fig. 10.11 The bivariate regression coefficient function β1(s, t) for the model (10.13) estimated
from the 143 log hazard rate functions for the Swedish life-table data. The ridge in β1(s, t) is one
year off the diagonal.

10.5.1 Functional t-Tests

Consider the Berkeley growth study data for both boys and girls in Figure 10.12.
This plot suggests that boys generally become taller than girls. However, is this
difference statistically significant? To evaluate this, we consider the absolute value
of a t-statistic at each point:

T (t) =
|x̄1(t)− x̄2(t)|√

1
n1

Var[x1(t)]+ 1
n2

Var[x2(t)]
(10.16)

This is plotted in the solid line in Figure 10.13. By itself, this provides a sense of
the relative separation of the two groups of functions. However, a formal hypothesis
test, requires a value or statistic to test, and a probability value indicating the result
of the test. The test statistic that we use is the maximum value of the multivariate
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T-test, T (t). To find a critical value of this statistic, we use a permutation test. We
perform the following procedure:

1. Randomly shuffle the labels of the curves.
2. Recalculate the maximum of T (t) with the new labels.

Repeating this many times allows a null distribution to be constructed. This pro-
vides a reference for evaluating the maximum value of the observed T (t).

The following code executes a permutation test and generates the graphic in Fig-
ure 10.13. It uses a default value of 200 random shuffles, which is more than ade-
quate for such a large difference as is shown, but might not suffice for more delicate
effects.

tperm.fd(hgtmfd,hgtffd)

Here hgtmfd and hgtffd are functional data objects for the males and females
in the study. It is apparent that there is little evidence for difference up to the age
of around 12, about the middle of the female growth spurt, at which point the boys
rapidly become taller. We can conclude that the main reason why boys end up taller
than girls is that they get an extra couple of years of growth on the average.
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Fig. 10.12 The heights of the boys and of the girls in the Berkeley growth study. In order to tell
that the growth curves for the two groups are different, we use a permutation test.
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Fig. 10.13 A permutation test for the difference between girls and boys in the Berkeley growth
study. The dashed line gives the permutation 0.05 critical value for the maximum of the t-statistic
and the dotted the permutation critical value for the point-wise statistic.

10.5.2 Functional F-Tests

In the more general case of functional linear regression, the same approach can be
applied. In this case, we define a functional version of the univariate F-statistic:

F(t) =
Var[ŷ(t)]

1
n ∑(yi(t)− ŷ(t))2

(10.17)

where ŷ are the predicted values from a call to fRegress. Apart from a scale
factor, this is the functional equivalent of the scalar F-statistic in multiple linear
regression. It reduces to that for scalar-response models, as discussed in Section
9.5 above. As before, we reduce this to a single number by calculating max(F(t))
and conducting a permutation test. In this case, we permute the response curves
(or values), leaving the design unchanged. A test for no-effect of geographic re-
gion on temperature profile is conducted below. Figure 10.14 reports point-wise
and maximal F-statistics and their corresponding permutation critical values for the
temperature data.

F.res = Fperm.fd(temp36fd, regionlist, betaList)
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Fig. 10.14 A permutation test for a predictive relationship between geographic region and temper-
ature profile for the Canadian weather data.

10.6 Details for R Functions fRegress, fRegress.CV and
fRegress.stderr

10.6.1 Function fRegress

Because of its importance, we have set up a number of calling sequences for
fRegress. These depend on the class of y, the first argument of the function.
The first three cases concern the response being a vector of numbers, a functional
data object or a functional parameter object. The last two allow the user to specify a
model using a formula as in the R core function lm. The Matlab version can handle
the first three cases, but not the last two.

numeric: fRegress(y, xfdlist, betalist, wt=NULL,
y2cMap=NULL, SigmaE=NULL, ...)

fd: fRegress(y, xfdlist, betalist, wt=NULL,
y2cMap=NULL, SigmaE=NULL, ...)

fdPar: fRegress(y, xfdlist, betalist, wt=NULL,
y2cMap=NULL, SigmaE=NULL, ...)

character: fRegress(y, data=NULL, betalist=NULL,
wt=NULL, y2cMap=NULL, SigmaE=NULL,
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method=c(’fRegress’, ’model’),
sep=’.’, ...)

formula: fRegress(y, data=NULL, betalist=NULL,
wt=NULL, y2cMap=NULL, SigmaE=NULL,
method=c(’fRegress’, ’model’),
sep=’.’, ...)

The arguments are described as follows:

y the dependent variable object. It may be an object of five possible classes:

scalar a vector if the dependent variable is scalar.
fd a functional data object if the dependent variable is functional. A y of this

class is replaced by fdPar(y, ...) and passed to fRegress.fdPar.
fdPar a functional parameter object if the dependent variable is functional,

and if it is desired to smooth the prediction of the dependent variable.
character or formula a formula object or a character object

that can be coerced into a formula providing a symbolic description of the
model to be fitted satisfying the following rules: The left hand side, formula
y, must be either a numeric vector or a univariate object of class fd or fdPar.
If the former, it is replaced by fdPar(y, ...).
All objects named on the right hand side must be either numeric or fd
(functional data) or fdPar. The number of replications of fd or fdPar ob-
ject(s) must match each other and the number of observations of numeric
objects named, as well as the number of replications of the dependent variable
object. The right hand side of this formula is translated into xfdlist, then
passed to another method for fitting (unless method = ’model’). Multi-
variate independent variables are allowed in a formula and are split into
univariate independent variables in the resulting xfdlist. Similarly, cate-
gorical independent variables with k levels are translated into k-1 contrasts
in xfdlist. Any smoothing information is passed to the corresponding com-
ponent of betalist.

data an optional list or data.frame containing names of objects identified
in the formula or character y.

xfdlist a list of length equal to the number of independent variables (including
any intercept). Members of this list are the independent variables. They can be
objects of either of these two classes:

scalar a numeric vector if the independent variable is scalar.
fd a (univariate) functional data object.

In either case, the object must have the same number of replications as the de-
pendent variable object. That is, if it is a scalar, it must be of the same length
as the dependent variable, and if it is functional, it must have the same number
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of replications as the dependent variable. (Only univariate independent variables
are currently allowed in xfdlist.)

betalist For the fd, fdPar, and numeric methods, betalist must be
a list of length equal to length(xfdlist). Members of this list are func-
tional parameter objects (class fdPar) defining the regression functions to be
estimated. Even if a corresponding independent variable is scalar, its regression
coefficient must be functional if the dependent variable is functional. (If the de-
pendent variable is a scalar, the coefficients of scalar independent variables, in-
cluding the intercept, must be constants, but the coefficients of functional inde-
pendent variables must be functional.) Each of these functional parameter objects
defines a single functional data object, that is, with only one replication.
For the formula and charactermethods, betalist can be either a list,
as for the other methods, or NULL, in which case a list is created. If betalist is
created, it will use the bases from the corresponding component of xfdlist if
it is function or from the response variable. Smoothing information (arguments
Lfdobj, lambda, estimate, and penmat of function fdPar) will come
from the corresponding component of xfdlist if it is of class fdPar (or for
scalar independent variables from the response variable if it is of class fdPar)
or from optional ... arguments if the reference variable is not of class fdPar.

wt weights for weighted least squares
y2cMap the matrix mapping from the vector of observed values to the coeffi-

cients for the dependent variable. This is output by function smooth.basis.
If this is supplied, confidence limits are computed, otherwise not.

SigmaE Estimate of the covariances among the residuals. This can only be esti-
mated after a preliminary analysis with fRegress.

method a character string matching either fRegress for functional regression
estimation or mode to create the argument lists for functional regression estima-
tion without running it.

sep separator for creating names for multiple variables for fRegress.fdPar
or fRegress.numeric created from single variables on the right hand side
of the formula y. This happens with multidimensional fd objects as well as
with categorical variables.

... optional arguments

These functions return either a standard fRegress fit object or a model speci-
fication:

fRegress fit a list of class fRegress with the following components:

y the first argument in the call to fRegress (coerced to class fdPar)
xfdlist the second argument in the call to fRegress.
betalist the third argument in the call to fRegress.
betaestlist a list of length equal to the number of independent variables

and with members having the same functional parameter structure as the cor-
responding members of betalist. These are the estimated regression coef-
ficient functions.



10.6 Details for R Functions fRegress, fRegress.CV and fRegress.stderr 169

yhatfdobj a functional parameter object (class fdPar) if the dependent
variable is functional or a vector if the dependent variable is scalar. This is the
set of predicted by the functional regression model for the dependent variable.

Cmat the coefficient matrix for the linear equations (10.7) that define the so-
lution to the regression problem.

Dmat the right side vector for the linear equations (10.7) that define the solu-
tion to the regression problem.

Cmatinv a matrix containing the inverse of the coefficient matrix for the lin-
ear equations that define the solution to the regression problem. This matrix is
required for function fRegress.stderr that estimates confidence regions
for the regression coefficient function estimates.

wt the vector of weights input or inferred
df equivalent degrees of freedom for the fit; only present if class(y) is
numeric.
If class(y) is either fd or fdPar, the fRegress object returned also
includes 5 other components:

y2cMap an input y2cMap
SigmaE an input SigmaE
betastderrlist an fd object estimating the standard errors of
betaestlist

bvar the covariance matrix defined in (10.11).
c2bMap a map

model specification The fRegress.formula and
fRegress.character functions translate the formula into the argument
list required by fRegress.fdPar or fRegress.numeric. With the de-
fault value ’fRegress’ for the argument method, this list is then used to call the
appropriate other fRegress function.
Alternatively, to see how the formula is translated, use the alternative ’model’
value for the argument method. In that case, the function returns a list with the
arguments otherwise passed to these other functions plus the following additional
components:

xfdlist0 a list of the objects named on the right hand side of formula.
This will differ from xfdlist for any categorical or multivariate right hand
side object.

type the type component of any fd object on the right hand side of
formula.

nbasis a vector containing the nbasis components of variables named in
formula having such components

xVars an integer vector with all the variable names on the right hand side of
formula containing the corresponding number of variables in xfdlist.
This can exceed 1 for any multivariate object on the right hand side of class
either numeric or fd as well as any categorical variable.



170 10 Linear Models for Functional Responses

10.6.2 Function fRegress.CV

fRegress.CV performs leave-one-out cross validation for a model computed with
fRegress. In the case of a scalar response, ordinary and generalized cross valida-
tion scores can be computed analytically without having to leave each observation
out one at a time. These scores are already returned by fRegress. For functional
response models, we must calculate the cross-validated scores by brute force. This
can take some time.

The function call is

fRegress.CV(y, xfdlist, betalist, CVobs,...)

The arguments are as follows:

y the dependent variable object; either a vector, a functional data object or a func-
tional parameter object.

xfdlist a list whose members are functional parameter objects specifying
functional independent variables. Some of these may also be vectors specifying
scalar independent variables.

betalist a list containing functional parameter objects specifying the regres-
sion functions and their level of smoothing.

CVobs a vector giving the indexes of the observations to leave out, one at a time,
in computing the cross-validation scores. This defaults to all observations, but
may be used to leave out artificial zero observations, as in the functional ANOVA
models described in this chapter.

... optional arguments not used by fRegress.CV but needed for superficial
compatibability with fRegress methods.

The function returns a list object with attributes:

SSE.CV The sum of squared errors, or integrated squared errors
errfd.cv Either a vector or a functional data object giving the cross-validated

errors.

10.6.3 Function fRegress.stderr

The calling sequence is

fRegress.stderr(y, y2cMap, SigmaE, ...)

The arguments are as follows:

y the named list of length six that is returned from a call to function fRegress.
y2cMap a matrix that contains the linear transformation that takes the raw data

values into the coefficients defining a smooth functional data object. Typically,
this matrix is returned from a call to function smooth.basis that generates
the dependent variable objects. If the dependent variable is scalar, this matrix is
an identity matrix of order equal to the length of the vector.
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SigmaE either a matrix or a bivariate functional data object according to whether
the dependent variable is scalar or functional, respectively. This object has a num-
ber of replications equal to the length of the dependent variable object. It contains
an estimate of the variance-covariance matrix or function for the residuals.

... optional arguments not used by fRegress.stderr but needed for super-
ficial compatibability with fRegress methods.

The function returns a list object with these three attributes:

betastderrlist a list object of length equal to the number of independent
variables. Each member contains a functional parameter object for the standard
error of a regression function.

bvar a symmetric matrix containing sampling variances and covariances for the
matrix of basis coefficients for the regression functions. These are stored column-
wise in defining BVARIANCE.

c2bMap a matrix containing the mapping from response variable coefficients to
coefficients for regression coefficients.

10.7 Details for Function plotbeta

The calling sequence is

plotbeta(betaestlist, betastderrlist, argvals=NULL,
xlab="", ...)

The arguments are as follows:

betaestlist a list containing one or more functional parameter objects (class
= fdPar) or functional data objects (class = fd).

betastderrlist a list containing functional data objects for the standard er-
rors of the objects in betaestlist.

argvals a sequence of values at which to evaluate betaestlist and
betastderrlist.

xlab x axis label
... additional plotting parameters passed to plot.

There is no return value.

10.8 Details for Function linmod

The calling sequence is

linmod(yfdobj, xfdobj, betaList)

The arguments are as follows:
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yfdobj a functional data object for the response or dependent variable func-
tions.

xfdobj a functional data object for the covariate or independent variable func-
tions.

betaList a list object containing three functional parameter objects. The first
is for the intercept term β0 in (10.12), the second is for the bivariate regression
function β1 in (10.12) as a function of the first argument s, and the third is for β1
as a function of the second argument t.

The function returns a list of length three with attributes as follows:

beta0estfd a functional data object for the estimated intercept.
beta1estbifd a bivariate functional data object for the bivariate regression

function.
yhatfdobj a function data object for the predicted response function.

10.9 Details for Functions Fperm.fd and tperm.fd

10.9.1 Function Fperm.fd

This function can be called with exactly the same calling sequence as fRegress,
it has additional arguments which all have default values:

nperm number of permutations to use in creating the null distribution.
argvals If yfdPar is a fd object, the points at which to evaluate the point-
wise F-statistic.
q Critical upper-tail quantile of the null distribution to compare to the observed
F-statistic.
plotres Argument to plot a visual display of the null distribution displaying
the qth quantile and observed F-statistic.
... Additional plotting arguments that can be used with plot.

If yfdPar is a fd object, the maximal value of the point-wise F-statistic is cal-
culated. The point-wise F-statistics are also returned. The default of setting q =
0.95 is, by now, fairly standard. The default nperm = 200 may be small, de-
pending on the amount of computing time available. If argvals is not specified
and yfdPar is a fd object, it defaults to 101 equally-spaced points on the range of
yfdPar.

If plotres = TRUE and yfdPar is a functional data object a plot is produced
giving the functional F-statistic along with 95th quantiles of the null distribution at
each point and the 95th quantile of the null distribution of maximal F-values. If
yfdPar is scalar, a histogram is plotted with the 95th quantile marked along with
the observed statistic. The function returns a list with the following elements which
may be used to reconstruct the plot.
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pval the observed p-value of the permutation test.
qval the qth quantile of the null distribution.
Fobs the observed maximal F-statistic.
Fnull a vector of length nperm giving the observed values of the permutation
distribution.
Fvals the point-wise values of the observed F-statistic.
Fnullvals the point-wise values of of the permutation observations.
pvals.pts point-wise p-values of the F-statistic.
qvals.pts point-wise qth quantiles of the null distribution
fRegressList the result of fRegress on the observed data
argvals argument values for evaluating the F-statistic if yfdPar is a func-
tional data object.

10.9.2 Function tperm.fd

This function carries out a permutation t-test for the difference between two groups
of functional data objects. Its arguments are

x1fd and x2fd functional data objects giving the two groups of functional ob-
servations.
nperm the number of permutations to use in creating the null distribution.
q Critical upper-tail quantile of the null distribution to compare to the observed
t-statistic.
argvals If yfdPar is a fd object, the points at which to evaluate the point-
wise t-statistic.
plotres Argument to plot a visual display of the null distribution displaying
the 1-qth quantile and observed t-statistic.

If plotres=TRUE a plot is given showing the functional t-statistic, along with
the critical values of the permutation distribution at each point and the permutation
critical value of the maximal t-statistic. It returns a list with the objects necessary to
recreate the plot:

pval the observed p-value of the permutation test.
qval the qth quantile of the null distribution.
Tobs the observed maximal t-statistic.
Tnull a vector of length nperm giving the observed values of the permutation
distribution.
Tvals the point-wise values of the observed t-statistic.
Tnullvals the point-wise values of of the permutation observations.
pvals.pts point-wise p-values of the t-statistic.
qvals.pts point-wise qth quantiles of the null distribution
argvals argument values for evaluating the F-statistic if yfdParis a func-
tional data object.
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10.10 Some Things to Try

The Swedish lifetable data consist of the log hazard rates (instantaneous risk of
death) at ages 0 to 80 for Swedish women by birth year from 1757 to 1920. We
want to develop a model for the way in which these have evolved over the years to
1900, and consider how well we can use this to forecast the hazard rate for women
born in the year 1920.

1. Smooth the data appropriately. Create a separate smooth for Swede1920 using
the same amount of smoothing as you used for the original data. Explore these
smooths – are there clearly evident features in how they change over time?

2. Create a functional linear model to predict the hazard curves from birth year.
Choose smoothing parameters by cross validation. Provide a plot of the error
covariance. Plot the coefficient functions along with confidence intervals.

3. Examine the residuals from your model above. Are there any indications of lack
of fit? If there are, construct an appropriately-modified model. Plot the R-squared
for both the linear model and the new one. Does there appear to be evidence for
the effect of time on hazard curves?

4. Extrapolate your models to predict the hazard rate at 1920. How well does each
do? Do they give better predictions than just the mean hazard curve?

5. Because the hazard curves are ordered in time, it is also possible to consider a
functional time series model. Specifically, fit a model with the auto-regressive
structure:

yi+1(t) = β0(t)+β1(t)yi(t)+ εi(t).

Report the results of your model. You should provide confidence intervals for
β0(t) and β1(t). If you think the model will benefit from smoothing, do so. Does
the model appear to fit well? Do you prefer this model, or the model only using
time as a predictor? Why?

10.11 More to Read

The concurrent linear model is closely related to the varying coefficients model. See
Hastie and Tibshirani (1993), plus a large recent literature associated in Ramsay
and Silverman (2005). A theoretical coverage of more general functional response
models is given in Cuevas et al. (2002) as well as earlier papers by Cardot et al.
(1999) and Ferraty and Vieu (2001). An elegant discussion of the ways in which
the functional ANOVA can be treated is given in Brumback and Rice (1998) and
associated discussion.



Chapter 11
Functional Models and Dynamics

This chapter brings us to the study of continuous time dynamics, where functional
data analysis has, perhaps, its greatest utility by providing direct access to relation-
ships between derivatives that could otherwise be studied only indirectly. Although
dynamical systems are the subject of a large mathematical literature, they are rel-
atively uncommon in statistics. We have therefore devoted the first section of this
chapter to reviewing them and their properties. Then we address how “Principal
Differential Analysis (PDA)” can contribute to their study from an empirical per-
spective.

11.1 Introduction to Dynamics

Functional data offer access to estimated derivatives, which reflect rates of change.
We have already seen the interpretative advantage of looking at velocity and accel-
eration in the Berkeley growth data. The field of dynamics is the study of systems
that are characterized by relationships among derivatives. Newton’s Second Law,

F = ma

which we can rewrite in functional data analysis terms as

D2x(t) =
1
m

F(t), (11.1)

is probably the most famous dynamic model. It is, in fact, a concurrent functional
linear model with a constant coefficient function where force F is the functional
covariate predicting acceleration D2x. Dynamic models such as this are developed in
the physical sciences from first principles and are often proposed as approximations
to data derived from complex systems of all kinds.

175
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11.1.1 An Example of First Order Dynamics

Consider a straight-sided bucket of water with a leak at the bottom. Water will leak
out from the hole at a rate proportional to the amount of pressure on the bottom of
the bucket and the size of the hole. Since the pressure is proportional to the height
x(t) of the water in the bucket at time t, the flow rate Dx(t) can be described as
follows:

Dx(t) =−βx(t). (11.2)

The negative sign is introduced here because water flowing out of the bucket reduces
the height.

Equations with this structure have the solution

x(t) = Ce−β t .

Since C = x(0), it is is called the initial condition or state of this system. Since in
our example β > 0, the height of the water exhibits exponential decay.

If a hose adds water to the bucket at a rate g(t), equation (11.2) becomes

Dx(t) =−βx(t)+αg(t). (11.3)

The coefficient α is required to match the units of the two terms. The input function
g(t) is called a forcing function, changing the unforced behavior of the system.

Of course most buckets change their diameter with height, and there will be ad-
ditional loss from evaporation, splashing and so forth. Effects such as these would
require the coefficients to change with time:

Dx(t) =−β (t)x(t)+α(t)g(t). (11.4)

This is a concurrent functional linear model predicting the instantaneous rate of
change Dx(t) on the basis of two covariates: the state x(t) and the external input or
forcing g(t).

Not all systems can be interpreted or developed so readily. Nonetheless, explor-
ing the relationships between derivatives in a system can provide a useful guide to
understanding its behavior. One of the useful aspects of first and second order linear
dynamics is that explicit solutions can be given for systems like (11.3) that enable us
to understand the instantaneous nature of the system’s behavior. These are explored
further in the next section.

Even fairly simple dynamical systems can produce highly complex behavior.
This is one of the reasons they are such powerful mathematical tools. Analyzing
such systems is an on-going area of research in applied mathematics with a large
body of literature. However, for linear systems, it is fairly easy to write down ex-
plicit solutions.

When a forcing function is included the system, (11.3) leads to

x(t) = Ce−β t + e−β t
∫ t

0
αeβτ g(τ)dτ.
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To make this equation more interpretable, let’s consider the situation where g(t) = g
is constant:

x(t) = Ce−β t +
αg
β

.

The height of water tends to a level αg/β that balances inflow of water with outflow
leaving the bucket. Moreover, it tends to that level at an exponential rate. As a rule
of thumb, the exponential term implies that x(t) will move approximately 2/3 of the
distance to αg/β in 1/β time units.

11.1.2 Interpreting Second Order Linear Dynamics

Of course, relationships between x and Dx may not capture all the important infor-
mation about how a system evolves. Linear second order dynamics are expressed
as

D2x(t) =−β0x(t)−β1Dx(t)+αg(t) (11.5)

A good way to understand (11.5) is to think of a physical system described by
Newton’s Second Law: Each of the terms represents a different “force” on the sys-
tem. The first term represents position-dependent forces like a spring for which the
“stress” (force) is proportional to the “strain” (deformation). The second term is pro-
portional to the speed at which the system moves, and can be thought of in terms of
friction or viscosity, especially when β1 is positive. As before, g(t) again represents
external inputs into a system that modify its behavior, like Newton’s Second Law,
expression (11.1) above.

Let us first suppose that β1 = α = 0 so that

D2x(t) =−β0x(t)

If β0 ≥ 0 the solutions are of the form

x(t) = c1 sin(
√

β0t)+ c2 cos(
√

β0t),

which are periodic with a period 1/
√

β0.
More generally, if β1 6= 0, we examine the discriminant

d = β 2
1 /4−β0.

Direct differentiation shows that solutions are given by linear combinations of ex-
ponential functions

x(t) = c1 exp(γ1t)+ c2 exp(γ2t)

with

γ1 =
−β1

2
+
√

d, γ2 =
−β1

2
−
√

d.
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These solutions will decay exponentially if γ1 < 0 (since γ2 <= γ1). If d < 0, γ1 and
γ2 are complex conjugates, and

x(t) = exp(−β1t/2)[d1 sin(t
√
−d)+d2 cos(t

√
−d)].

This yields oscillations that increase or decrease according to the sign of β1.
Using these observations, we can divide the (β0,β1) space into regions of dif-

ferent qualitative behavior: oscillatory and non-oscillatory, exponential growth and
exponential decay. This division is depicted in Figure 11.1.

0

0

β
1

β
0

Increasing
Oscillations

Decreasing
Oscillations

Exponential
Decay

Exponential
Growth

d=0

Fig. 11.1 A diagram of the various dynamic regimes for a second-order differential equation for
different values of β0 and β1.

For many purposes, we may want to generalize expression (11.5) further to con-
sider time-varying coefficients:

D2x(t) =−β1(t)Dx(t)−β0(t)x(t) (11.6)

in terms of the instantaneous values of the functional discriminant

d(t) = β1(t)2/4−β0(t).

These diagnostics should be understood with some caution: If the coefficient
functions in (11.6) vary rapidly, their instantaneous changes may not translate into
substantive changes in the overall behavior of x(t). For example, if d(t) becomes
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negative only briefly, there may not be enough time for any meaningful oscillation
to occur. Rapidly changing coefficient functions or strong relationships between the
coefficient functions of x(t) and its derivatives may provide a good indication that a
more complex, nonlinear system could be considered.

We draw from all of this that a relatively simple dynamic equation like (11.5) can
define a wide variety of behaviors.

We also see the important issue of system stability. There are multiple definitions
of stability, but in general if the coefficient of velocity, β1(t), is positive, the system
will be stable, exhibiting something like exponential decay possibly with a damped
oscillation; if β1(t) is negative, the system will exhibit something like exponential
growth or a similarly growing oscillation.

11.1.3 Higher-Dimensional Linear Systems

Dynamic models can include more than one state variable. The second order system
discussed in Section 11.1.2 can be cast as a first order system with a vector state,
with components representing the location and velocity. In this context it is less easy
to produce analytic expressions with which to analyze the stability properties of a
system. However, the rules are not very different. A multi-dimensional linear system
involving a k-dimensional state can be written as

Dx(t) =−B(t)x(t), (11.7)

where B(t) is now a k× k matrix. It is clear that for this system, x(t) ≡ 0 results in
a stable solution.

We can specialize this system to constant coefficients and add a forcing function
to get the following:

Dx(t) =−Bx(t)+u(t)

If u is constant, this system has a fixed point at x = −B−1u at which the solution
does not change. We can understand the stability of this solution in terms of the
eigenvalues d1, . . . ,dk of −B. Letting

ξ j(t) = ed jt , j = 1, . . . ,k,

the solution to (11.7) is given in terms of linear combinations of the ξ j(t). For a
general matrix B, some of the eigenvalues may be complex. For real-valued matrices
B, any complex eigenvalue will be paired with its complex conjugate. Moreover,
the imaginary parts describe the oscillations that we observed for the second order
system, with the period of oscillation being 2π over the (positive) imaginary part of
each complex conjugate pair. Moreover, any eigenvalue with a positive real part will
explode exponentially; a complex conjugate pair of eigenvalues with a positive real
part will exhibit an exponentially increasing oscillation. A forcing term may shift
the behavior but will not change the stability properties unless the forcing term is
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a function of the state vector in a way that in essence modifies the state transition
matrix B.

How are we to deal with higher-order multivariate dynamics? In Section 11.4 we
use a model of the form

D2x(t) =−B0(t)x(t)−B1(t)Dx(t)+u(t).

In order to examine the stability of this system, we expand it by creating a new
variable y(t) = Dx(t). This system can be written down as

(
Dy(t)
Dx(t)

)
=

(−B1(t) −B0(t)
I 0

)(
y(t)
x(t)

)
+

(
u(t)

0

)
.

That is, we treat Dx(t) as extra dynamical variables to provide a first-order 2k×2k
system. The same analysis may be made of the eigenvalues of the expanded matrix
above. As for one-dimensional systems, we can only interpret the local behavior of a
system if the parameters in the system change at a much slower rate than the system
itself.

11.2 Principal Differential Analysis for Linear Dynamics

We have seen how linear models describing relationships between derivatives results
in a system whose behavior can be qualitatively characterized. We would now like
to use this theory to characterize the behavior of a system from which we have data.

How can we fit linear dynamic models to functional data? One approach is to
solve a differential equation like (11.3) for some value of the parameters and fit
this to observed data by least squares. This procedure is computationally expensive,
however and such models rarely fit observed data well since they do not account for
unobserved external influences on a system.

Instead, we use the fact that functional data analysis already gives us derivative
information. Given repeated measurements of the same process, we can model

Dxi(t) =−β (t)xi(t)+α(t)ui(t)+ εi(t), (11.8)

where the εi(t) are error terms to allow for variation between different curves.
This expression represents a functional linear regression and could be fit with
fRegress.

However, we can view the model in a different light: when ui(t) ≡ 0 functional
linear regression estimates β (t) to minimize

PDASSE(β ) =
N

∑
i=1

∫
[Dxi(t)+β (t)xi(t)]

2 dt =
N

∑
i=1

∫ [
Lβ xi(t)

]2 dt. (11.9)
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That is, the model looks for a linear differential operator to represent covariation be-
tween x and Dx. This method has been labeled principal differential analysis (PDA)
because of its similarity to principal components analysis:

• functional PCA looked for linear operators defined by β (t) to explain variation
between curves

• PDA looks for linear operators to explain variation between derivatives but within
curves.

Naturally, we can extend the same ideas to multivariate functions and to higher
derivatives, these are all accommodated in the fda package.

When we also wish to consider inputs into a dynamical system, the PDA objec-
tive criterion is the difference between the effective input and the linear differential
operator:

PDASSEu(β ) =
N

∑
i=1

∫ [
Lβ xi(t)−α(t)u(t)

]2 dt. (11.10)

Both β and α here are functional objects to be estimated. This creates an input-
output system which responds to changes in u(t). Our examples below do not use
forcing functions, but we provide a description of how to incorporate them into the
code.

11.3 Principal Differential Analysis of the Lip Data

We illustrate the use of PDA with data on the movement of lips during speech pro-
duction. Figure 11.2 present the position of the lower lip when saying the word
“Bob” twenty times. As is clear from the data, there are distinct opening and shut-
ting phases of the mouth surrounding a fairly linear trend that corresponds to the
vocalization of the vowel. Muscle tissue behaves in many ways like a spring. This
observations suggests that we consider fitting a second-order equation to these data.

The function pda.fd is the basic tool for this analysis. In a break from our
naming conventions, the equivalent Matlab function is pdacell. The arguments
to this function are similar to fRegress. We need to give it the functional data
object to be analyzed along with a list of functional parameter objects containing
bases and penalties for the β and α coefficient functions. The following code takes
care of this in the lip data (stored in lipfd) when no smoothing is imposed and
with α(t) set to zero.

bwtlist = list(fdPar(lipbasis,2,0),
fdPar(lipbasis,2,0))

pdaList = pda.fd(lipfd,bwtlist)

We now need to analyze the result. The first thing we would like to do is consider
the stability properties of the model. The code below constructs the discriminant



182 11 Functional Models and Dynamics

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

−
10

−
5

0
5

10

Normalized Time

lip
 p

os
iti

on
 (

m
m

)

Fig. 11.2 The lip data. These give the position of the lower lip relative to the upper during 20
enunciations of the word ”Bob” by the same subject.

function for the dynamical system that is output by pda.fd, it is plotted in Figure
11.3.

plot.pda(pdaList)
dfd = 0.25*pdaList$bwtlist[[2]]$fdˆ2

- pdaList$bwtlist[[1]]$fd
dfd$fdnames = list(’time’,’rep’,’discriminant’)

From this we see that there is an initial explosive motion as the lips, previously
sealed, are opened. This is followed by a period where the motion of the lips is
largely oscillatory with a period of about 30-40ms. This corresponds approximately
to the spring constant of flaccid muscle tissue. During the ’o’ phase of the word,
there is a period of damped behavior when the lips are kept open in order to enunci-
ate the vowel.

We can also overlay our β coefficients on the bifurcation diagram in Figure 11.1.
The following code produces Figure 11.4.

pda.overlay(pdaList)

This tells much the same story. The initial impulse corresponds to explosive growth,
followed by largely stable oscillatory motion.
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Fig. 11.3 Results of performing principal differential analysis on the lip data. Top two panels
represent the estimated β0(t) and β1(t) functional coefficients. The bottom panel shows the dis-
criminant function. This reveals in initial explosive motion as the lips part followed by oscillatory
motion, modulated for the production of the ’o’.

11.4 PDA of the Handwriting Data

PDA could be effectively carried out using fRegress, but it also works for multi-
variate functional observations. Here we examine the handwriting data in Figure 1.8
where PDA provides informative results. As for the lip data, since this is a physical
system, we model the second-derivative of the data.

For multi-dimensional systems, a principal differential analysis will have three
levels of weight functions. Each function is indexed according to the equation in
which it appears (i), the variable it multiplies ( j), and the derivative of that variable
(k):

Lxi(t) = Dmxi(t)+
m−1

∑
k=0

d

∑
j=1

βi jk(t)Dkx j(t) (11.11)

In order to account for these levels of functions, for multidimensional systems
pda.fd uses lists in R and cell arrays in Matlab for both functional data and func-
tional parameter objects. To begin with, we take x to be given by a list of functional
data objects, one for each dimension. This allows the various dimensions of x to be
defined with respect to different bases. In the handwriting data example we split the
fdafd object into each of its dimensions:
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Fig. 11.4 An overlay of the PDA parameters estimated for the lip data on a bifurcation diagram of
a second-order linear system. Points are marked as time points from 0 to 0.35 seconds. The inial
explosive growth is followed by a period close to undamped oscillations.

xfdlist = list(fdafd[,1],fdafd[,2],fdafd[,3])

If we want to construct a second-order analysis we need a three-dimensional array
of functional parameter objects. In Matlab, this is simply a three-dimensional cell
array, the dimensions being in the order (i, j,k) in (11.11). In R, we achieve the
same result by nesting lists within lists so that once we have created the bwtlist
object we should have that bwtlist[[i]][[j]][[k]] contains the functional
parameter object needed to define βi jk(t). The following code sets up the analysis
of the handwriting data:

pdaPar = fdPar(fdabasis,2,0)
pdaParlist = list(pdaPar, pdaPar)
bwtlist = list( list(pdaParlist,pdaParlist),

list(pdaParlist,pdaParlist) )
pdaList = pda.fd(xfdlist, bwtlist)

For higher dimensional systems, the analysis presented in Figure 11.4 is no longer
feasible. Instead, we consider the point-wise eigenvalues of the system that we de-
scribed in Section 11.1.3. These can be plotted as functional quantities. Non-zero
eigenvalues sometimes come in conjugate pairs. Therefore, a plot of the imagi-
nary part of the eigenvalues may be symmetrical. With nonzero imaginary parts,
the system oscillates. When the real part of any eigenvalue is positive, the system
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experiences exponential growth or a growing oscillation. Otherwise it is stable or
decaying.

The function eigen.pda(pdaList) takes the result of pda.fd and pro-
duces the stability analysis given in Figure 11.5. As can be see, there is a strong and
stable periodic solution in the data, with the real parts of the eigenvalues staying
close to zero, indicating that the writing is dominated by ellipsoidal motion.
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Fig. 11.5 Stability analysis of an principal differential analysis of the handwriting data. The nearly-
constant imaginary eigenvalue indicates a constant cycle modulated locally.

11.5 Registration and PDA

How do we reconcile registration and the analysis of dynamics? These appear to be
competing demands. The appearance of features in data such as the pubertal growth
spurt makes an a priori case for registration: the dynamics of growth are likely to
be markedly different during puberty than at other times. We therefore would like to
align individuals so that puberty occurs at the same time and the dynamics should
therefore be comparable across individuals. However, it is fairly easy to see that
registration can have a strong effect on the derivatives of functional data:

Dx(h(t)) = D[h](t)D[x] (h(t))
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Here, D[x](h(t)) indicates that this is the derivative of x with respect to its argument
rather than with respect to t. This will be stronger for second derivatives. We may
thus lose the comparison that registration was designed to achieve.

One way around this is to register derivatives individually. That is, we first take
derivatives, register each of them individually with the same registration curve, and
then conduct a regression analysis. The register.newfd function is designed
to do this. The following code carries this out for the lip data. We first perform
landmark registration, then register each of the first and second derivatives with the
resulting registration function. Doing this creates a separate functional data object
for each derivative, and these objects no longer represent exact derivatives and anti-
derivatives of each other. pda.fd is designed to analyze the dynamical properties
of a single functional data object from which derivatives can be extracted. It will
therefore not be usable here and we instead use fRegress:

lipreglist = landmarkreg(lipfd, as.matrix(lipmarks),
lipmeanmarks, WfdPar)

Dlipregfd = register.newfd(deriv.fd(lipfd,1),
lipreglist$warpfd)

D2lipregfd = register.newfd(deriv.fd(lipfd,2),
lipreglist$warpfd)

xfdlist = list(-Dlipregfd,-lipreglist$regfd)
lipregpda = fRegress( D2lipregfd, xfdlist, bwtlist)

The results of this have been plotted with the original PDA results in Figure 11.6:
The registered coefficient functions are smoother. The period towards the end in
which β0(t) is nearly identically zero also suggests a pure frictional force when the
mouth is closing.

11.6 Details for pda.fd, eigen.fd, pda.overlay and
register.newfd

11.6.1 Function pda.fd

pda.fd functions very much like fRegress except that since both the response
and covariates are given by derivatives of the same function, only one functional
data object needs to be specified. It also handles multivariate functional data, but
insists that each dimension be given in a separate element of a list. This allows each
dimension to be defined with respect to different bases. The standard call is

pda.fd(xfdlist, bwtlist,awtlist, ufdlist,nfine)

We divide the description of the arguments into two cases

x(t) is univariate

xfdlist a functional data object defining x(t)
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Fig. 11.6 A comparison of PDA results for the unregistered lip data (solid) and the lip data with
each derivative first calculated and then registered with the same warping function (dashed).

bwtlist a list of functional parameter objects, the jth element of each should
specify the basis and smoothing penalty for β j(t).

awtlist a list of functional parameter objects defining the coefficient func-
tions for the inputs, this should be the same length as ufdlist and may be
NULL.

ufdlist a list of functional data objects that act as external influences on the
system.

x(t) is multivariate

xfdlist a list of functional data objects, the ith entry defining xi(t)
bwtlist a list of lists of lists of functional parameter objects.
bwtlist[[i]][[j]][[k]] should define the basis and smoothing penalty
for βi jk(t).

awtlist a list of lists functional parameter objects. awtlist[[i]][[j]]
represents the co-efficient of ufdlist[[i]][[j]] in equation i.

ufdlist a two-level list of functional data objects, ufdlist[[i]] repre-
sents the list of input functions that affect equation i.

Both awtlist and ufdlist default to NULL, in which case they are ignored.
Individual elements of bwtlist, awtlist and ufdlist can be set to NULL,
in which case the corresponding coefficient functions are forced to be zero. nfine
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gives the number of evaluation points at which to perform a linear regression. It
defaults to 501.
The function returns

bwtlist a list array of the same dimensions as the corresponding argument,
containing the estimated or fixed weight functions defining the system of linear
differential equations.

resfdlist a list of length equal to the number of variables or equations. Each
members is a functional data object giving the residual functions or forcing func-
tions defined as the left side of the equation (the derivative of order m of a vari-
able) minus the linear fit on the right side. The number of replicates for each
residual functional data object is the same as that for the variables.

awtlist a list of the same dimensions as the corresponding argument. Each
member is an estimated or fixed weighting function for a forcing function.

11.6.2 Function eigen.pda

This function calculates the point-wise eigenvalues of the system and produces a
plot of the same format as Figure 11.5. If awtlist is present, the fixed point of
the system is also calculated at each time and plotted. Its arguments are

pdaList a list object returned by pda.fd.
plotresult should the result be plotted? Default is TRUE
npts number of points to use for plotting.
... other arguments for plot.

In addition to producing the plot the function returns a list with elements

argvals The evaluation points of the coefficient functions.
eigvals The corresponding eigenvalues of the system at each point.
limvals The point-wise fixed-point of the system.

11.6.3 Function overlay.pda

For a second-order univariate principal differential analysis, this function plots β0(t)
against β1(t) and overlays a bifurcation diagram. It requires

pdaList a list object returned by pda.fd.
nfine number of points to use for plotting.
ncoarse number of points use as time-markers along the plot.
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11.6.4 Function register.newfd

This function will register a given functional data object with a specified warping
function. It requires

yfd a multivariate functional data object defining the functions to be registered
with Wfd.

Wfd a functional data object defining the registration functions to be used to reg-
ister yfd. This can be the result of either landmarkreg or register.fd.

type indicates the type of registration function.

direct assumes Wfd is a direct definition of the registration functions. This
is produced by landmarkreg.

monotone assumes that Wfd defines a monotone functional data objected,
up to shifting and scaling to make endpoints agree. This is produced by
register.fd.

periodic does shift registration for periodic functions. This is output from
register.fd if periodic=TRUE.

It outputs a functional data object containing the registered curves.

11.7 Some Things To Try

1. Instead of the time-varying principal differential analysis given for the handwrit-
ing data, try a constant-coefficient principal differential analysis, but include a
constant forcing term. Does your interpretation differ markedly? What does the
fixed point of the system tell you?

2. Try a PDA of the Chinese handwriting data. Do the dynamics of this system
appear to be very different from the cursive script?

3. PDA can be performed on a single time series as well, but we have to borrow
strength across times instead of across replicates. One easy way to do this is
to insist that all the βi jk(t) be constant. Try this with data on the incidence of
melanoma over a 30 year period. These data are available in the melanoma
object.

a. Smooth the data, choosing the optimal λ by gcv and plot both data and the
smooth. We observe that there are two distinct dynamics: a linear trend and a
cycle with a period of about 10 years.

b. These observations suggest that

D4x(t)+αD2(x)≈ 0

We would like to get a handle on α . Conduct a PDA using your estimated
smooth and representing α as a constant functional data object.
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c. pda.fd produces an Lfd object. Try re-smoothing the data using this object
to define a penalty. How does the optimal value of λ change? How do the
degrees of freedom change?

11.8 More to Read

The study of dynamics has a long history in applied mathematics. Borrelli and Cole-
man (2004) provide a good introductory overview. While linear differential equa-
tions with constant coefficients are relatively easily studied, nonlinear systems are
harder to analyze. Generalizing (11.7) a system is described by a vector of states,
and its evolution is given in terms of

Dx = f(x,u,θ), (11.12)

where f is a vector-valued nonlinear function. Unlike (11.7), however, it is not usu-
ally possible to write down solutions to (11.12) analytically. Instead, we must rely
on numerical methods to approximate them. Despite these challenges, nonlinear dy-
namical systems have proved enormously versatile in producing different forms of
qualitative behavior that mimic real-world processes, from bursts of neural firing
through epidemic processes and chemical reactions. We can examine the behavior
of these systems by extending the analysis of the stability of linear systems that we
described above and examining how the stability of fixed points and cycles changes
with elements of the parameter vector θ . This is a large field and the reader is di-
rected to the relevant literature, for example Kuznetsov (2004) to learn more.

Despite the usefulness of such models, there is relatively little literature on as-
sessing their agreement with data, or on estimating and performing inference for θ .
This is partly due to the numerical difficulties involved in finding solutions to (11.12)
and partly due to the idealization involved in assuming that a system evolves deter-
ministically. One way of reducing the numerical challenges in fitting these data is a
nonlinear version of PDA; if all the components of x are measured, we can smooth
the data to create x̂ and estimate θ to minimize

SISE(θ) =
∫

(Dx̂(t)− f(x(t),u(t),θ))2 dt.

The idea has been rediscovered numerous times (see Bellman and Roth, 1971;
Varah, 1982; Pascual and Ellner, 2000; Chen and Wu, 2008). The statistical prop-
erties of the resulting estimates have recently been examined (Brunel, 2008). This
technique can only be used, however, when there is enough data to smooth each
component of x. More recent work has focussed on using (11.12) as a smoothing
penalty and iteratively refining θ to match the data (Ramsay et al., 2007). The use
of functional data analysis in statistical inference for nonlinear systems remains an
important research area.



Symbol Table

Table 11.1 Numbers in parentheses refer to chapters where the symbol is used as indicated.

Numbers in parentheses refer to chapters where the symbol is used as indicated.
b,b regression coefficient function(s) estimates
c,c basis expansion coefficient(s)
d discriminant of a second order system; eigenvalue for a first order system
g forcing function
h,h warping function(s)
i, j,k, ` indices
I,J,K,m,n,N dimensions of vectors or matrices
s,s value(s) on the domain of a function
t, t value(s) on the domain of a function
w,W log derivative of monotone or warping function
x,x functional data observation(s)
y,y functional data observation
z,z covariate scalar or functional data observation(s)
α rate constant in an exponent (3); an intercept (9); forcing function (11)
β , β regression coefficient function (scalar or vector)
γ rate constant in an exponent
δ time shift (8, 10); statistical technique (10)
ε error or residual
θ latent ability value (1); parameter (11)
λ smoothing parameter value
µ mean function (9,10,1 ); eigenvalue (7)
ν eigenvalue (7)
ξ weight function (6); exponential basis function (11)
η weight function (7)
π trigonometric constant
ρ correlation (4, 6); probe functional (6, 7)
σ ,Σ standard deviation, variance, covariance
φ ,φ basis function
ψ,ζ basis function
Θ matrix of basis function values
Φ matrix of basis function values
Ψ matrix of basis function values
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