Functional responses,
functional covariates
and the concurrent
model
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1. Predicting precipitation profiles — Em=m
from temperature curves

e Precipitation is much harder to predict than tempera-
ture.

e It comes in two main forms:

— Drizzle: Large low pressure zones drop moisture
over many hours or days.

— Storms: Convective, short violent storms with a lot
of precipitation in a hurry, and spatially localized.

e Precipitation tends to be seasonal; more in the spring
and fall than in the summer and winter.
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e We can assume that climate zone is important.

e We will predict log precipitation; logging stabilizes vari-
ance and eliminates the positivity constraint.

e We will use the difference TempRes,,,(t) between a
temperature profile and the mean for the climate zone
as a function covariate.

e \We can extend the functional ANOVA model to
log[Prec ,,,(t)] = pu(t)+cx,(t)+ TempRes, , ()3 ()46, (2)

e \We call this model concurrent because it assumes that
the temperature today affects today’s precipitation.



The functional data

e Where precipitation was recorded as 0 mm, we
changed it to 0.05 mm, half the minimum positive value.

e We used 11 Fourier series basis functions for precipita-
tion with no roughness penalty.

e We used 21 Fourier series basis functions for tempera-
ture with no roughness penalty.
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The fitting criterion and some results

e The fitting criterion was the unpenalized error sum of
squares

LMSSEu, ay, 3) =
N
/ S [LogPrec () — u(t) — ay(t
: —TempRes, (t)3(t)]° dt
e The resulting root—-mean-squared-residual was 0.19

mm.

e When we dropped TempRes(t) from the model, this in-
creased to 0.20 mm.

e As we see in the following plot, the only place where
temperature appears to make a contribution is in mid—
winter.
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The estimated regression functions(¢)
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The fit to Vancouver’s data
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A probe for the winter effect

e The confidence limits are point—wise; we need a mea-
sure of the temperature influence accumulated over the
winter months.

e Here is a probe that works:
365
/ cos2m(t — 64.5) /363]3(t) dt = 2.32
0

e The estimated standard error of this probe is 0.77, giv-
ing a t-ratio of 3.0.

e |t appears that elevated temperatures in mid-winter go
along with increased precipitation.
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2. Fitting the concurrent model
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tional/functional model: Summary

Zzzy /6] +€z ) 0

e Or in matrix notation:
y(t) =Z(t)B(t) + €(?) ,

e We will use a penalized error sum of squares criterion:

LMSSES) =
/ V() — (OB — Z(1)B(1)] dt

+ZA/ L;B;(t)



The basis function expansions fof3;(s)

e Let regression function 3;(s) have the expansion
Bj(s) = bj0;(s)
in terms of K; basis functions 6;;(s).

e Some of the independent variables can be scalar; in this
case the basis for their 3;(s)’s is the constant basis;

0i1(s) =1
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e Defining K3 = Zj K;, we construct vector b of length
K by stacking the coefficient vectors vertically, that is,

b = (b, b,.... b .

e Now assemble ¢ by K3 matrix function © as follows:

(9,0 -0
o — 0 6, --- 0
00 -6

e \We can now express our model as

y(t) = Z()O(t)b + e(t) .
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e We also need to arrange the order K; roughness

penalty matrices

into the symmetric block diagonal matrix R of order /s:

MR,y -

AR, 0
0
0 0

-0

0

’ AqRq

(1)
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The normal equations

/@ ()O() dt + Rb —

/ O'(1)Z'(t)y(t) di]

e The numerical integration in these equations is not as
difficult as it seems. The scalar functions

N

wielt) = Y 2i(t)zue(?)

7

play the role of weighting functions for the functional in-
ner products

[ o080 g. =1,
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3. Evolution In seasonal trend for the
nondurable goods index i e cncarnt
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Periodic trend

Four seasonal trends

— 1965

0.02¢

-0.02¢

J F M A M J

J

Predicting precipitation . . .
Fitting the concurrent. ..

Evolution in seasonal ...

Summary



e Seasonal trends are stable over a couple of years, but
evolve over a longer time span.

e We can model nonseasonal trend plus an evolving sea-
sonal trend as follows:

y(t) = at)+P1(t) sin(2mt /365)+F5(t) cos(2mt /365)+. . .
+3,-1(t) sin(pmt/365) + B,(t) cos(pmt/365) + €(t)

e For the monthly index values from 1952 to 2000 we
used p = 10.

e Intercept function o was modelled by B-splines with
knots at each year and regularized with A = 0.01.

e Each regression function 3; had 7 B-spline basis func-
tions.

e Atotal of 121 parameters were estimated from 577 data
points.
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The fit to the data over seven years
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4, Summary

e The concurrent functional linear model offers a simple
way of relating a functional response to functional co-
variates.

e However, the influence is simultaneous, and does not
permit a covariate to affect the outcome at any time
other than the present.

e The model can also be fit to a single long time series
provided that the number of parameters is kept small
and/or regularization is used.
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