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Derivatives and
functional linear

models

A first look at a differential equation

as a modelling tool.
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1. The oil refinery data
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Refinery output x(t) (top panel) and
input u(t) (bottom panel)
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• This is a simple input/output system in an oil refinery in
Corpus Christi, Texas.

• A fluid, called reflux, flows into tray 47 in a distillation
column in an oil refinery.

• The input variable u(t) is the flow rate.

• The fluid level in the tray is the output variable x(t).
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Variation on two time scales

• Over the longer scale, tray level changes from 0 to
around 4.

• But we are also interested in how rapidly the change
takes place; that is, short-scale variation.

• It looks like about 2/3 of the change takes about 50 min-
utes, and the final value is reached in 200 minutes or
so.
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A concurrent functional regression

• We can model the output state Tray (t) as a simple
time-varying regression on input state Reflux (t):

Tray (t) = Reflux (t)β(t) + ε(t)

• In functional data analysis, we call this a concurrent
regression because only the simultaneous influence of
the input on the output is modelled.

• A least squares estimate β̂(t) of the regression coeffi-
cient function minimizes

SSE=

∫
[Tray (t)− Reflux (t)β(t)]2 dt

• β̂(t) is modelled with an expansion in terms of several
B-spline basis functions.
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is just as complicated as the output.
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Making the derivative DTray (t) the
output

• We now model the rate of change DTray (t), using the
output state Tray (t) and the input Reflux (t) as covari-
ates.

• We’ll use constants for the two regression functions:

DTray (t) = −β1Tray (t) + β2Reflux (t) + ε(t)

• This is an example of a first order differential equation
with constant coefficients.

• We see that it is just another form of concurrent func-
tional linear model, now with two covariates, but with
regression functions β1 and β2 that are constant.
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The solid line is the derivative estimated from the data, and
the dashed line is the model’s fit to this derivative. β̂1 = 0.02
and β̂2 = 0.19
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• A differential equation that is this simple has an explicit
solution.

x(t) = e−β1t[x(0)− (β2/β1)

∫ t

0
eβ1su(s) ds].

• β1 ≈ 0.02 is the rate constant, and therefore con-
trols the rate of change of Tray level. About 2/3 of
the change takes 1/β1 time units, and the final level is
nearly reached in 4/β1 time units. β1 models the dy-
namic behavior of Tray .

• β2 ≈ 0.19, along with β1, defines the ultimate change;
the long-term gain per unit increase in Reflux flow is
β2/β1 ≈ 9.5.
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Modelling the rate of change DTray (t) directly produces a
fine fit to the data with only two parameters.
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2. The melanoma data
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Age-adjusted melanoma incidences for
Connecticut.

The solid line is a spline smooth with penalty on D4x.
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Estimating a differential operator L

• A differential operator L is just a re-arranged differential
equation.

• Can we smooth the data and estimate the operator at
the same time?

• Will this give us a better fit to the data with fewer de-
grees of freedom used up?

• We will try the operator

Lx = β1D
2x + D4x

• This operator a tilted line plus sinusoidal trend with the
period to be estimated from the data.
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The algorithm

• Start with β1 = 0 and Lx = D4x, and estimate deriva-
tives up to order 4, choosing λ to minimize the GCV
criterion.

• Carry out concurrent functional regression to estimate
β1.

• Re-smooth using Lx, again re-computing derivatives
and minimizing GCV.

• Continue until the parameter estimates converge.
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Solid blue line is smooth using converged Lx penalty.
Dashed line is smoothing using D4 penalty. Dotted line is a
solution to differential equation Lx = 0.
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Phase-plane plot
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3. Summary

• By using a derivative as the dependent variable, we can
model the rate of change of an output variable.

• The resulting differential equation can be solved to pro-
vide a model for the output variable itself.

• We effectively get two or more models for the price of
one.

• We are simultaneously modelling the level or state of a
system and its dynamics.
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