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multivariate covariates
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1. Predicting temperature curves
from climate zones

• We have 35 weather stations distributed across four cli-
mate zones:

– Atlantic (16)

– Pacific (6)

– Continental (13)

– Arctic (4)

• The dependent variable is Temp(t), a function repre-
senting daily temperatures averaged over 1960–1994.

• The temperature functions were obtained by expanding
the original 365 discrete daily averages in terms of 65
Fourier basis functions.
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Montreal’s temperature profile
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The functional ANOVA model

• The model is

Tempmg(t) = µ(t) + αg(t) + εmg(t).

• µ is the grand mean function

• αg are the specific effects on temperature of being in
climate zone g. To be able to identify them uniquely, we
require that they satisfy the constraint∑

g

αg(t) = 0 for all t. (1)

• εmg is the residual function showing unexplained vari-
ation specific to the kth weather station within climate
group g.
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Setting up the model

• Set up a 35 by 5 matrix Z. Column 1 contains all 1’s,
and columns g + 1, g = 1, . . . , 4 contain zeros except
for 1’s in rows corresponding to stations in climate zone
g.

• Append a final row with 0 in column 1, and 1’s in the
remaining columns.

• Let the functional response vector Temp(t) contain the
35 temperature profiles plus a final function that is zero
for all t.

• Let functional regression coefficient vector β(t) contain
the functions (µ, α1, . . . , α4).

• The model in matrix notation,, including the zero sum
constraint,is

Temp(t) = Zβ(t) + ε(t),
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Fitting the model

• The residual Tempi(t) − Ziβ(t) is now a function.

• The least squares fitting criterion becomes

LMSSE(β) =

4∑
g

Ng∑
m

∫
[Tempmg(t)−

q∑
j

z(mg),jβj(t)]
2 dt.

• This is minimized with respect to the regression func-
tions by

ˆβ(t) = (Z′Z)−1Z′Temp(t)
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The region effectsαg(t)
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The mean plus region effects
µ(t) + αg(t)
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The standard error of measurement
function σ(t)
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2. Assessing fit

• Is there significant variation in temperature over climate
zones? Of course there is! This does not seem like an
interesting question.

• On the other hand, whether the Atlantic, Pacific and
Continental stations are significantly different in the
summer might be.

• Interesting summaries of fit, of effects, and inferences
are likely to be local in nature.
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• It is useful to use the error sum of squares function

SSE(t) =
∑
mg

[Tempmg(t) − Zmgβ̂(t)]2.

to assess fit at or near time t.

• As in ordinary regression, we can compare this to the
variation of the response about its mean

SSY(t) =
∑
mg

[Tempmg(t) − µ̂(t)]2

• The corresponding mean squared error functions are

MSE(t) = SSE(t)/df (error)

MSR(t) =
SSY(t) − SSE(t)

df (model)
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Multiple correlation and F-ratio
functions

• The squared multiple correlation function is

RSQ(t) = [SSY(t) − SSE(t)]/SSY(t).

• and the F-ratio function is

FRATIO(t) =
MSR(t)

MSE(t)
.
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R2 and F–ratio plots



Predicting temperature . . .

Assessing fit

Estimating the . . .

Functional probes or . . .

Correlations between . . .

Summary

Home Page

Title Page

JJ II

J I

Page 14 of 32

Go Back

Full Screen

Close

Quit

3. Estimating the regression functions
βj(t)

• We want a general framework for estimating functional
parameters in this and other linear models.

• We want to be able to penalize the roughness of any
parameter βj.

• We also want the capacity to estimate confidence inter-
vals for a parameter,

• and for functionals ρ(βj) of a parameter.
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Some basis function expansions for
βj(t)

• Let the regression coefficient vector β(t) have the ex-
pansion

β(t) = Bθ(t)

where matrix B is q by Kβ and the Kβ basis functions
θ`(t) are contained in vector θ(t).

• In the temperature example, it would be natural to use
a certain number Kβ of Fourier basis functions.
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A roughness penalty forβj(t)

• If the response curves in y(t) are rough, we may want
to impose some smoothness on the estimated βj ’s.

• Let L be a linear differential operator, such as L = D2,
that defines variation Lβ(t) that we wish to penalize.

• Our roughness penalty on β(t) is

PEN(β) =

∫
[Lβ(s)]′[Lβ(s)] ds .
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The penalized least squares criterion

• Let the response function vector y(t) have the basis
function expansion in terms of Ky basis functions φk(t):

y(t) = Cφ(t)

• Then the penalized least squares function is

PENSSE(y|β) =

∫
(Cφ − ZBθ)′W(Cφ − ZBθ)

+λ

∫
(LBθ)′(LBθ) .
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Penalized least squares in matrix terms

• we need to define these three matrices:

Jφφ =

∫
φφ′ , Jθθ =

∫
θθ′ , Jφθ =

∫
φθ′

• and this roughness penalty matrix

R =

∫
(Lθ)(Lθ)′ .

• The fitting criterion now can be expressed as

PENSSE(y|β) = trace (C′CJφφ) + trace (Z′ZBJθθB
′) −

2 trace (BJθθC
′Z) + λ trace (BRB′) ,
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The normal equations for B

• Taking the matrix derivative with respect to B and set-
ting it to 0 gives

(Z′ZBJθθ + λBR) = Z′CJφθ .

• We can use the Kronecker product to convert expres-
sions of the form ABC′ to

vec (ABC′) = (C ⊗ A)vec (B) ,

and consequently the normal equations become

[Jθθ ⊗ (Z′Z) + R ⊗ λI ]vec (B) = vec (Z′CJφθ) .

• The estimate B̂ is therefore

vec (B̂) = [Jθθ ⊗ (Z′Z) + R ⊗ λI ]−1(Jφθ ⊗ Z′)vec (C)

= Sβvec (C).



Predicting temperature . . .

Assessing fit

Estimating the . . .

Functional probes or . . .

Correlations between . . .

Summary

Home Page

Title Page

JJ II

J I

Page 20 of 32

Go Back

Full Screen

Close

Quit

4. Functional probes or contrasts

• Estimating the entire regression function βj(t) is fine,

• but we want to focus our attention on local or specific
shape features of βj(t).

• Perhaps, for example, we want to examine the behavior
of the temperature coefficient functions in mid-winter.

• A functional probe or contrast is of the form

ρ(β) =

∫
ξ(s)βj(s) ds

• ξ(s) is a weight function that we choose so as to con-
centrate our attention on a local region, or to look for
specific patterns of variation in βj(t).

• There no particular need for ξ(s) to integrate to 0.
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• When βj(s) has the basis function expansion

βj(s) = Bjθ(s),

where Bj is the jth row of B, the contrast becomes

ρ(β) = Bj

∫
ξ(s)θ(s) ds
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Some examples

• Point evaluation:

ξ(s) = δ(s − t)

This simply produces the function value β(t).

• Local behavior: Assuming that β is periodic, we can use

ξ(s) = exp[(s − t)2/(2σ)]

to assess the behavior of β in a neighborhood of t of a
size determined by constant σ.
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How do I work out confidence limits
for these probes?

• The random element in a linear model is the residual
function value

εi(tj) = yij − xi(tj).

• Any linear function of the data inherits it’s variance from
the variance of the data.

• The variance of the data conditional on the model is the
variance of the residuals.
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• We have two tasks:

– Estimate the variance of the residuals for a single
response. (The mean can usually be taken to be 0.)
Let’s call this Σe.

– Assuming independence of the observations, the
variance of the whole response data matrix is

Var [vec(Y)] = Σe ⊗ I .

– Work out the linear mapping from the data to the
probe ρ(βj) that is being estimated. Let us call this
M j.

• The rest is easy:

Var [ρ(βj)] = M ′
j(Σe ⊗ I)M j
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How do I work out mapping M j?

• In the examples given, ρ(βj) is three linear mappings
removed from the data:

– The linear mapping from the raw data in matrix Y
to the coefficient matrix C defining the smooth func-
tions in y(t). This is

vec (C) = (Sy ⊗ I)vec (Y).

– The linear mapping from C to the regression coeffi-
cient function coefficient vector B′

j. We worked this
out already, and called it Sβ.

– The linear mapping from B′
j to the value of the probe.

This is

U =

∫
ξ(s)θ′(s) ds
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• Now we have it, namely

M j = UjSβ(Sy ⊗ I)

• This process is easy to extend to probes ξ(s) involving
all regression coefficients.

• For example, the variance of vec [β̂(t)] where t is a vec-
tor of values of t, is

(Θ⊗ I)Sβ(Sy ⊗ I)(Σe ⊗ I)(S′
y ⊗ I)S′

β(Θ⊗ I)′ .

where Θ is the matrix of values of θ at t.
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Some cautionary notes

• These sampling variances would only be “exact” if we
knew Σe. The value of our confidence limit estimates
depends critically on the quality of the estimate of Σe.
There are many open questions about how to do this.

• We are assuming that the distribution of a probe is well
summarized by its mean and variance.

• Our estimates are all conditioned on how many basis
functions we use for both yi(t) and βj(t), namely Ky

and Kβ. Since we never know exactly how many to use,
these should be regarded as random quantities, and a
Bayesian treatment seems to be indicated.

• We should back up the use of these “delta method” con-
fidence regions by bootstrapping and simulations.
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5. Correlations between temperature
and log precipitation residuals

• Once we have removed the climate zone effects from
the temperature and log precipitation curves, are there
one or more modes of correlation between them?

• We can use canonical correlation analysis to explore
this question.

• We used the harmonic acceleration operator to impose
smoothness on the two sets of canonical weighting
functions.

• The smoothing parameter for the temperature residual
was λ = 107, and for the log precipitation residual it was
λ = 109.
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The canonical correlations
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The first two canonical weight
functions
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The first two canonical variable scores
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6. Summary

• Regressing a functional response on multivariate inde-
pendent variables or on a design matrix is not much
different from the conventional regression analysis.

• One important difference is that we want to do local in-
ference and interval estimation.

• We have, too, the capacity to smooth estimated func-
tional parameters.

• But the number of basis functions that we use is not a
fixed parameter in the traditional sense.
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