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PCA is usually used when we want to find the dominant
modes of variation in the data, usually after subtracting the
mean from each observation.
We want to know how many of these modes of variation
are required to achieve a satisfactory approximation to the
original data.
It may be assumed that keeping only dominant modes will
improve the signal–to–noise ratio of what we keep.
We usually want to know what these modes represent in
terms that we can explain to non–statisticians. Rotation of
the principal components can help at this point.



Outline



Let’s see what changes when we go from the multivariate
version to the functional version.
The short answer: Summations change into integrations



Multivariate PCA

1 Find principal component weight vector ξ1 = (ξ11, . . . , ξp1)
′

for which the principal components scores

fi1 =
∑

j

ξj1xij = ξ′1xi

maximize
∑

i f 2
i1 subject to∑

j

ξ2
j1 = ‖ξ1‖2 = 1.

2 Next, compute weight vector ξ2 with components ξj2 and
principal component scores maximizing

∑
i f 2

i2, subject to
the constraint ‖ξ2‖2 = 1 and the additional constraint∑

j

ξj2ξj1 = ξ′2ξ1 = 0.

3 and so on as required.



Functional PCA

1 Find principal component weight function ξ1(s) for which
the principal components scores

fi1 =

∫
ξ1(s)xi(s) ds

maximize
∑

i f 2
i1 subject to∫

ξ2
1(s) ds = ‖ξ1‖2 = 1.

2 Next, compute weight function ξ2(s) and principal
component scores maximizing

∑
i f 2

i2, subject to the
constraint ‖ξ2‖2 = 1 and the additional constraint∫

ξ2(s)ξ1(s) ds = 0.

3 and so on as required.
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We have 30-year average temperatures for each month
and for each of 35 Canadian weather stations.



The centered monthly temperature curves



What do we see?

An impression that some curves are high (warm) and that
some curves are low (cold).
Also that some curves have larger variation between
summer and winter than others.
How much of the variation do these two types of variation
account for?



The correlation surface



What do we see?

The diagonal ridge corresponding to unit correlation
between temperatures at identical times.
The ridge perpendicular to this corresponding to
correlations between temperatures symmetrically placed
around mid–summer.
Correlations fall off much more rapidly for times symmetric
about March and September 21.



The first four principal components



What do we see?

The two components that we saw in the centered curves
account for about 98% of the variation.
The first four components account for 99.8% of the
variation.
The first four components tend to look like linear, quadratic,
cubic and quartic polynomials, respectively. Why is that?
It can help to plot the components by adding and
subtracting a multiple of them from the mean function.



The first four principal components +/- mean



The first two principal component scores



What do we see?

Most stations are along a curved line running from lower
center to top right.
At the top end of the banana are maritime stations with
less variation between winter and summer, and high
average temperatures.
At the lower end are the continental stations with large
seasonal variation and lower average temperatures.
The Arctic stations are in their own space with large
seasonal variation and very low average temperatures.
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Principal components as empirical orthogonal
functions

We can think of principal components as a set of
orthogonal basis functions constructed so as to account for
as much variation at each stage as possible.
In fact, they are often used as just that: A compact basis
for approximating the data with as few basis functions as
possible.
They come out looking like polynomials of increasing
degree because dominant variation tends to be smooth (i.
e. nearly constant or linear), and subsequent components
pick up variation that declines in smoothness, and is also
required to be orthogonal to previous components. Just
like orthogonal polynomials!



Rotating principal components

Once we have a set of orthogonal components spanning
as much variation as we desire, we can always rotate these
orthogonally to get a new set spanning the same space.
The advantage is that rotated components may be easier
to interpret.
The VARIMAX rotation method is often used in the social
sciences to improve interpretability.
Functional principal components can be rotated in this way
as well.



Rotated principal components for temperature



What do we see?

The total variation accounted for remains the same, 99.8%.
The first two components now account for a less
overwhelming amount of the variation.
Each rotated component now accounts for departure from
the mean for a small part of the year.
These are much easier to interpret. Components 1 and 3
are the most important, and account for deviation from the
mean in mid–winter and in the fall, respectively.



How many principal components can be
computed?

In the multivariate case, the upper limit is the number of
variables.
In the function case, “variables” correspond to values of t ,
and there is no limit to these.
Instead, the upper limit is the number N of observations, or
N − 1 if the functions are centered.
But in some cases, the number of basis functions K will be
less than N, and in this case K is the upper limit.
We usually stop far short of either of these limits, however.



What if the functions are themselves multivariate?

This often arises if the functions are spatial coordinates,
[X (t),Y (t),Z (t)] or angular coordinates. Then we want to
study their simultaneous variation, rather than separately.
The solution is simple: Make a single synthetic function by
joining them together, compute it’s principal components,
and separate out the parts belong to each coordinate.



What if I had a mixture of functional and scalar
variables?

This often happens. We could study the components of
simultaneous variation in temperature profiles and log total
annual precipitation, for example.
Or the simultaneous variation in growth acceleration
curves and the parents’ adult stature.
Ramsay and Silverman (1997, 2004) show that this, too,
can be converted to a matrix eigenequation.
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In multivariate statistics, we solve the eigenequation

Vξ = ρξ

where
V is the sample variance-covariance matrix

V = N−1X′X

where, in turn, X is the centered data matrix.
ξ is an eigenvector of V.
ρ is an eigenvalue of V.

Usually, however, we actually use the correlation matrix R
instead of V so as to eliminate uninteresting scale
differences between variables.



What is the function version of the eigenequation?

Let

v(s, t) = N−1
N∑
i

xi(s)xi(t)

where usually functions xi(t) have been first centered.
v(s, t) is the sample variance-covariance function.
The functional eigenequation is∫

v(s, t)ξ(t) dt = ρξ(s)

ρ is still an eigenvalue, but now ξ(s) is an eigenfunction of
the variance-covariance function.
There is much less reason for using the correlation
function r(s, t) since function values all have the same
units or scale.



How do we solve for pairs of eigenvalues and
eigenfunctions?

Suppose that the observed functions are expanded in
terms of a vector φ(t) of K basis functions

x(t) = Cφ(t)

and the j th eigenfunction the expansion

ξj(s) = b′jφ(s) .

Substituting these expansions into the equation for v(s, t)
gives us

v(s, t) = N−1φ′(s)C′Cφ(t)



The eigenequation becomes

N−1φ′(s)C′C
∫

φ(t)φ′(t) dt bj = ρφ′(s)bj

Define order K matrix

J =

∫
φ(t)φ′(t) dt

so that the eigenequation is now

N−1φ′(s)C′CJbj = ρφ′(s)bj

This equation has to be true for all argument values s, and
consequently,

N−1C′CJbj = ρbj

subject to the constraint ‖ξ‖2 = 1, which becomes

b′jJbj = 1 .



if we define
uj = J1/2bj

then we have the symmetric eigenequation

N−1J1/2C′CJ1/2uj = ρuj

subject to the constraint

u′juj = 1

We can then use standard software to solve for the
eigenvectors uj and back–solve to get the required
coefficient vectors

bj = J−1/2uj

for computing the eigenfunctions ξj(s).



Suppose that I wanted to impose a roughness
penalty on ξj(s)

Indeed. If the data are rough, the eigenfunctions will be,
too, unless we force them to be smooth.
Skipping some technicalities, if we penalize ‖D2ξ‖2, for
example, we find that ξ satisfies the modified
eigenequation∫

v(s, t)ξ(t) dt = ρ[ξ(s) + λD4ξ(s)]

This, too, can be converted to an equivalent matrix
equation that is solvable with standard software.


