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Overview

Four functional linear models for the daily weather data.
A functional ANOVA for precipitation.
Predicting total annual precipitation from the temperature
profile.
Predicting today’s precipitation from today’s temperature.
Predicting the entire year’s precipitation from the year’s
temperature profile.
A short–term feed–forward model for precipitation.
A more general perspective.
Predicting precipitation dynamics: a differential equation
The idea of a linear model reviewed.
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concurrent model

6 Functional responses and functional covariates: The
general case
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The average Canadian weather data

35 Canadian weather stations selected to cover the
country.
Daily temperatures (0.1 degrees Celsius) and
precipitations (0.1 mm) averaged over the years 1960 to
1994. (Feb 29th combined with Feb. 28th).
Canada divided into Atlantic, Continental, Pacific and
Arctic weather zones.
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A functional analysis of variance

Does the precipitation profile vary from one weather zone
to another?
We have a number Ng of weather stations in each climate
zone g = 1, . . . ,4, and
the model for the mth temperature function in the gth
group, indicated by Precmg , is

Precmg(t) = µ(t) + αg(t) + εmg(t).

µ(t) is the grand mean function, summarizing precipitation
for all of Canada.
αg(t) is the functional effect of being in weather zone g
In order to fix zone effects, we require that∑

g

αg(t) = 0 for all g
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A scalar response and a functional independent
variable

The response is the log total annual precipitation

PrecToti =

∫ 365

0
Preci(t) dt

The model is

log(PrecToti) = α +

∫ 365

0
Tempi(s)β(s) ds + εi .

But here we have a real problem. How to avoid over-fitting
the 35 scalar observations?
We’ll use regularization or roughness penalties on the
estimated regression functions.
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A functional response and a functional
independent variable

This is a big topic, and breaks down into several useful special
versions.
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The concurrent functional model

We might only use the temperature at the same time s = t
because we imagine that precipitation now depends only
on the temperature now.
Our model is

Preci(t) = α(t) + Tempi(t)β(t) + εi(t)

We might call this model concurrent or point-wise.
Should we use regularization to force β to be smooth in t?
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The annual or total model

We may prefer to allow for temperature influence on
Prec(t) to extend over the whole year.
The model expands to become

Preci(t) = α(t) +

∫ 365

0
Tempi(s)β(s, t) ds + εi(t)

The value β(s, t) determines the impact of temperature at
time s on precipitation at time t .
We need roughness penalties for variation in both s and t
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The limited–term feed–forward model

it may be that what counts is whether the temperature has
been falling rapidly up to time t . The model expands to

Preci(t) = α(t) +

∫ t

t−δ
Tempi(s)β(s, t) ds + εi(t)

Here δ is the time lag over which we use temperature
information.
Now β is only defined over the somewhat complicated
trapezoidal domain: t ∈ [0,365], t − δ ≤ s ≤ t .
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The local influence model

Finally, we may open up the model to allow integration over
s within a t-dependent set Ωt .
The model may therefore be

Preci(t) = α(t) +

∫
Ωt

Tempi(s)β(s, t) ds + εi(t)



Quick Intro MV Covariates MV Covariates Fun Covariates Fun2FunNow Fun2FunGenl

Predicting derivatives

When the response is a derivative, then there is the
potential for the function itself to be a useful covariate.
The concurrent linear model

DPreci(t) = Preci(t)β(t) + εi(t)

is a homogeneous first order linear differential equation in
precipitation.
If we also include an influence of temperature,

DPreci(t) = Preci(t)β0(t) + Tempi(t)β1(t) + εi(t),

the equation is said to be forced or nonhomogeneous.
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What exactly makes a model linear?

We see that the functional linear model has a lot more
variants than it’s poor multivariate cousin.
We will need to look at a definition of a linear model that
encompasses these models and many others.
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Predicting temperature curves from climate zones

We have 35 weather stations distributed across four
climate zones:

Atlantic (16)
Pacific (6)
Continental (13)
Arctic (4)

The dependent variable is Temp(t), a function representing
daily temperatures averaged over 1960–1994.
The temperature functions were obtained by expanding the
original 365 discrete daily averages in terms of 65 Fourier
basis functions.
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Montreal’s temperature profile
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The functional ANOVA model

The model is

Tempmg(t) = µ(t) + αg(t) + εmg(t).

µ is the grand mean function
αg are the specific effects on temperature of being in
climate zone g. To be able to identify them uniquely, we
require that they satisfy the constraint∑

g

αg(t) = 0 for all t . (1)

εmg is the residual function showing unexplained variation
specific to the k th weather station within climate group g.
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Setting up the model

Set up a 35 by 5 matrix Z. Column 1 contains all 1’s, and
columns g + 1,g = 1, . . . ,4 contain zeros except for 1’s in
rows corresponding to stations in climate zone g.
Append a final row with 0 in column 1, and 1’s in the
remaining columns.
Let the functional response vector Temp(t) contain the 35
temperature profiles plus a final function that is zero for all
t .
Let functional regression coefficient vector β(t) contain the
functions (µ, α1, . . . , α4).
The model in matrix notation,, including the zero sum
constraint,is

Temp(t) = Zβ(t) + ε(t),
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Fitting the model

The residual Tempi(t)− Ziβ(t) is now a function.
The least squares fitting criterion becomes

LMSSE(β) =
4∑
g

Ng∑
m

∫
[Tempmg(t)−

q∑
j

z(mg),jβj(t)]2 dt .

This is minimized with respect to the regression functions
by

ˆβ(t) = (Z′Z)−1Z′Temp(t)
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The region effects αg(t)
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The mean plus region effects µ(t) + αg(t)
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The standard error of measurement function σ(t)
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Assessing fit

Is there significant variation in temperature over climate
zones? Of course there is! This does not seem like an
interesting question.
On the other hand, whether the Atlantic, Pacific and
Continental stations are significantly different in the
summer might be.
Interesting summaries of fit, of effects, and inferences are
likely to be local in nature.
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It is useful to use the error sum of squares function

SSE(t) =
∑
mg

[Tempmg(t)− Zmgβ̂(t)]2.

to assess fit at or near time t .
As in ordinary regression, we can compare this to the
variation of the response about its mean

SSY(t) =
∑
mg

[Tempmg(t)− µ̂(t)]2

The corresponding mean squared error functions are

MSE(t) = SSE(t)/df(error)

MSR(t) =
SSY(t)− SSE(t)

df(model)
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Multiple correlation and F-ratio functions

The squared multiple correlation function is

RSQ(t) = [SSY(t)− SSE(t)]/SSY(t).

and the F-ratio function is

FRATIO(t) =
MSR(t)
MSE(t)

.
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R2 and F–ratio plots
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Estimating the regression functions βj(t)

We want a general framework for estimating functional
parameters in this and other linear models.
We want to be able to penalize the roughness of any
parameter βj .
We also want the capacity to estimate confidence intervals
for a parameter,
and for functionals ρ(βj) of a parameter.



Quick Intro MV Covariates MV Covariates Fun Covariates Fun2FunNow Fun2FunGenl

Some basis function expansions for βj(t)

Let the regression coefficient vector β(t) have the
expansion

β(t) = Bθ(t)

where matrix B is q by Kβ and the Kβ basis functions θ`(t)
are contained in vector θ(t).
In the temperature example, it would be natural to use a
certain number Kβ of Fourier basis functions.
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A roughness penalty for βj(t)

If the response curves in y(t) are rough, we may want to
impose some smoothness on the estimated βj ’s.
Let L be a linear differential operator, such as L = D2, that
defines variation Lβ(t) that we wish to penalize.
Our roughness penalty on β(t) is

PEN(β) =

∫
[Lβ(s)]′[Lβ(s)] ds .
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The penalized least squares criterion

Let the response function vector y(t) have the basis
function expansion in terms of Ky basis functions φk (t):

y(t) = Cφ(t)

Then the penalized least squares function is

PENSSE(y |β) =

∫
(Cφ− ZBθ)′W(Cφ− ZBθ)

+λ

∫
(LBθ)′(LBθ) .
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Functional probes or contrasts

Estimating the entire regression function βj(t) is fine,
but we want to focus our attention on local or specific
shape features of βj(t).
Perhaps, for example, we want to examine the behavior of
the temperature coefficient functions in mid-winter.
A functional probe or contrast is of the form

ρ(β) =

∫
ξ(s)βj(s) ds

ξ(s) is a weight function that we choose so as to
concentrate our attention on a local region, or to look for
specific patterns of variation in βj(t).
There no particular need for ξ(s) to integrate to 0.
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When βj(s) has the basis function expansion

βj(s) = Bjθ(s),

where Bj is the j th row of B, the contrast becomes

ρ(β) = Bj

∫
ξ(s)θ(s) ds
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Some examples

Point evaluation:
ξ(s) = δ(s − t)

This simply produces the function value β(t).
Local behavior: Assuming that β is periodic, we can use

ξ(s) = exp[(s − t)2/(2σ)]

to assess the behavior of β in a neighborhood of t of a size
determined by constant σ.
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How do I work out confidence limits for these
probes?

The random element in a linear model is the residual
function value

εi(tj) = yij − xi(tj).

Any linear function of the data inherits it’s variance from the
variance of the data.
The variance of the data conditional on the model is the
variance of the residuals.
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We have two tasks:
Estimate the variance of the residuals for a single response.
(The mean can usually be taken to be 0.) Let’s call this Σe.
Assuming independence of the observations, the variance
of the whole response data matrix is

Var[vec(Y)] = Σe ⊗ I.

Work out the linear mapping from the data to the probe
ρ(βj ) that is being estimated. Let us call this Mj .

The rest is easy:

Var[ρ(βj)] = M′j(Σe ⊗ I)Mj
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Some cautionary notes

These sampling variances would only be “exact” if we
knew Σe. The value of our confidence limit estimates
depends critically on the quality of the estimate of Σe.
There are many open questions about how to do this.
We are assuming that the distribution of a probe is well
summarized by its mean and variance.
Our estimates are all conditioned on how many basis
functions we use for both yi(t) and βj(t), namely Ky and
Kβ. Since we never know exactly how many to use, these
should be regarded as random quantities, and a Bayesian
treatment seems to be indicated.
We should back up the use of these “delta method”
confidence regions by bootstrapping and simulations.



Quick Intro MV Covariates MV Covariates Fun Covariates Fun2FunNow Fun2FunGenl

Summary

Regressing a functional response on multivariate
independent variables or on a design matrix is not much
different from the conventional regression analysis.
One important difference is that we want to do local
inference and interval estimation.
We have, too, the capacity to smooth estimated functional
parameters.
But the number of basis functions that we use is not a fixed
parameter in the traditional sense.
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With functional responses and multivariate independent
variables we could estimate the regression coefficient
functions without necessarily needing to use roughness
penalties.
The same with functional responses, functional
independent variables and the concurrent model.
Now we look at a scalar response predicted by a functional
independent variable, and discover that a roughness
penalty or regularization is indispensable.
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A model for total annual precipitation

Let yi = LogPreci be the logarithm of total annual
precipitation at weather station i .
Here is our model:

LogPreci = α +

∫ T

0
Tempi(s)β(s) ds + εi .

We can think of the function values Temp(s) associated
with each fixed s as a separate scalar independent
variable.
If so, we have enough fitting power at our disposal to fit any
number of responses, and certainly only 35 of them.
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A bad idea

If we use the discrete daily temperature averages, we have
365 plus 1 for constant α independent variables to fit 35
responses.
Using the Moore-Penrose generalized inverse to keep us
out of trouble, we get the following estimate of β.
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Using only monthly values doesn’t help much.
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Estimating β(s) with a roughness penalty

We could impose smoothness on β(s) by expanding it in
terms of a small number (< 35) of basis functions.
Using a roughness penalty, however, gives us continuous
control over smoothness and other advantages.
Here is the penalized least squares criterion:

PENSSEλ(α, β) =
N∑

i=1

[yi − α−
∫

zi(s)β(s) ds]2

+ λ

∫
[Lβ(s)]2 ds ,
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Choosing a roughness penalty

Let’s penalize harmonic acceleration because we want
β(s) to be periodic:

Lβ(s) = (
2π
365

)2Dβ(s) + D3β(s)

We choose the smoothing parameter λ by minimizing the
cross-validation criterion.
Let α(−i)

λ and β(−i)
λ be the estimates using all the

responses except yi .
The criterion to be minimized is

CV(λ) =
N∑

i=1

[yi − α
(−i)
λ −

∫
zi(s)β

(−i)
λ (s) ds]2
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A plot of CV(λ)
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β(s) for log10 λ = 12.5
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A plot of the fit
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Summary

Either dimension reduction or regularization is essential
when the dimensionality of the covariate exceeds the
dimensionality of the response.
Functional covariates for scalar responses has been
heavily researched.

The group STAPH at U. Toulouse uses functional PCA to
reduce covariate dimensionality. Go to
www.lsp.ups-tlse.fr/FP/Ferraty/staph.html to
learn more.
Gareth James, the group at the U. of Granada, and Doug
Clarkson at Insightful Corp. have introduced functional
covariates into the generalized linear model.
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Predicting precipitation profiles from temperature
curves

Precipitation is much harder to predict than temperature.
It comes in two main forms:

Drizzle: Large low pressure zones drop moisture over many
hours or days.
Storms: Convective, short violent storms with a lot of
precipitation in a hurry, and spatially localized.

Precipitation tends to be seasonal; more in the spring and
fall than in the summer and winter.
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A model

We can assume that climate zone is important.
We will predict log precipitation; logging stabilizes variance
and eliminates the positivity constraint.
We will use the difference TempResmg(t) between a
temperature profile and the mean for the climate zone as a
function covariate.
We can extend the functional ANOVA model to

log[Precmg(t)] = µ(t) +αg(t) +TempResmg(t)β(t) + εmg(t)

We call this model concurrent because it assumes that the
temperature today affects today’s precipitation.
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The functional data

Where precipitation was recorded as 0 mm, we changed it
to 0.05 mm, half the minimum positive value.
We used 11 Fourier series basis functions for precipitation
with no roughness penalty.
We used 21 Fourier series basis functions for temperature
with no roughness penalty.
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Log precipitation profiles
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The fitting criterion and some results

The fitting criterion was the unpenalized error sum of
squares

LMSSE(µ, αg , β) =∫ N∑
k ,g

[LogPreckg(t)− µ(t)− αg(t)

−TempReskg(t)β(t)]2 dt

The resulting root–mean–squared–residual was 0.19 mm.
When we dropped TempRes(t) from the model, this
increased to 0.20 mm.
As we see in the following plot, the only place where
temperature appears to make a contribution is in
mid–winter.
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The estimated regression function β(t)
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The fit to Vancouver’s data



Quick Intro MV Covariates MV Covariates Fun Covariates Fun2FunNow Fun2FunGenl

A probe for the winter effect

The confidence limits are point–wise; we need a measure
of the temperature influence accumulated over the winter
months.
Here is a probe that works:∫ 365

0
cos[2π(t − 64.5)/365]β(t) dt = 2.32 ,

The estimated standard error of this probe is 0.77, giving a
t-ratio of 3.0.
It appears that elevated temperatures in mid-winter go
along with increased precipitation.
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Fitting the concurrent model

Here is a general statement of the concurrent
functional/functional model:

yi(t) =

q∑
j=1

zij(t)βj(t) + εi(t) .

or in matrix notation:

y(t) = Z(t)β(t) + ε(t) ,

We will use a penalized error sum of squares criterion:

LMSSE(β) =∫
[y(t)− Z(t)β(t)]′[y(t)− Z(t)β(t)] dt

+

p∑
j

λj

∫
[Ljβj(t)]2 dt .
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Evolution in seasonal trend for the log nondurable
goods index
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Four seasonal trends
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Seasonal trends are stable over a couple of years, but
evolve over a longer time span.
We can model nonseasonal trend plus an evolving
seasonal trend as follows:

y(t) = α(t) + β1(t) sin(2πt/365) + β2(t) cos(2πt/365) + . . .

+βp−1(t) sin(pπt/365) + βp(t) cos(pπt/365) + ε(t)

For the monthly index values from 1952 to 2000 we used
p = 10.
Intercept function α was modelled by B-splines with knots
at each year and regularized with λ = 0.01.
Each regression function βj had 7 B-spline basis functions.
A total of 121 parameters were estimated from 577 data
points.
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The fit to the data over seven years
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Summary

The concurrent functional linear model offers a simple way
of relating a functional response to functional covariates.
However, the influence is simultaneous, and does not
permit a covariate to affect the outcome at any time other
than the present.
The model can also be fit to a single long time series
provided that the number of parameters is kept small
and/or regularization is used.
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Overview

The fundamental question is this: If we have a covariate
z(s), how much of its variation over s should we use to fit
the response y(t) at fixed t?
In the simplest case, we only use z(t). We call this the
concurrent model because it predicts y at time t by z at
time t . We might call this “now-casting.”
If we want to use the behavior of z over an interval of
values s, or over all values, things are more complex
because this model has, effectively, an infinite amount of
fitting power.
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The full model for log precipitation

We now want to predict the log precipitation profile
LogPreci(t) at time t from the entire temperature profile
Tempi(s).
The fitting criterion is

LogPreci(t) = α(t) +

∫ 365

0
Tempi(s)β(s, t) ds + εi(t) .

β(s, t) indicates the influence of temperature at time s on
precipitation at time t .
We can use the whole temperature profile because the
data are periodic.
We have already learned from predicting total log
precipitation that we will have to apply a roughness penalty
to β(s, t) as a function of s.
What about its variation as a function of t?
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Log precipitation functions
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Temperature functions
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We apply two harmonic acceleration roughness penalties
to β(s, t), one for its variation in s, and one for its variation
in t .
Let’s see what happens with fairly light penalties on both
types of variation.
We’ll look at β(s, t) and at the fit to the log precipitation
data for Vancouver.
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β(s, t) has light penalties on s and t

β(s, t) is impossible to interpret.
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β(s, t) has light penalties on s and t

And we seem to have over–fitted Vancouver’s data.
Let’s increase the smoothing parameter for s.



Quick Intro MV Covariates MV Covariates Fun Covariates Fun2FunNow Fun2FunGenl

β(s, t) has heavy penalty on s and light on t

β(s, t) is interpretable as a function of s but impossible to
understand in t .
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β(s, t) has heavy penalty on s and light on t

We now have a more reasonable fit to Vancouver’s data,
but the fitting function is too rough.
Let’s increase smoothing parameters for both s and t .
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β(s, t) has heavy penalties on both s and t

β(s, t) is now smooth in both s and t .
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β(s, t) has heavy penalties on both s and t

The fit is reasonable and also smooth.
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What we see

Penalizing the roughness of β(s, t) as a function of s
prevents over-fitting.
Penalizing the roughness of β(s, t) as a function of t allows
us to see how the influence of temperature on precipitation
varies from one time to another.
We can now see that temperature is much more influential
in the winter than in the summer.
The rapid oscillation in s suggests that it is a derivative of
temperature that really influences precipitation.
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The intercept function α(t)
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The historical model and other possibilities

We were able to use all of z(s) to predict y(t) in the
weather example because the data were periodic.
In nonperiodic situations, it would only be meaningful to
use the values of s up to t .

y(t) = α(t) +

∫ t

t−δ(t)
z(s)β(s, t) ds + ε(s)

For the lower limit of integration t − δ(t), the width δ(t) of
the interval of integration can vary over t or can be
constant.
We can call this the historical linear model.
See Ramsay and Silverman (2002) for an example.
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More generally, we can integrate over a set Ωt that varies
with t ,
and also permit the covariate function z to vary over t as
well,

y(t) = α(t) +

∫
Ωt

z(s, t)β(s, t) ds + ε(s)
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How do we construct basis function systems for complex
regions of integration?
The triangular mesh algorithms used in finite element
methods to solve partial differential equations are natural
here.
Triangular meshes adapt well to nonstandard boundaries.
Triangular basis functions also can be regularized.
The PDEtools toolbox in Matlab contains powerful
functions for mesh generation.
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Lip acceleration predicted from EMG signal

Malfait and Ramsay (2004) studied how the acceleration of
the lower lip while saying ”bob” was related to the EMG
signal record from the depressor lip muscle. (see also
Ramsay and Silverman, 2002)
Each of 32 replications lasted for about 0.7 seconds.
EMG is an indirect indication of muscle activation.
It was hoped to learn something about the brain controls
speech production.



Quick Intro MV Covariates MV Covariates Fun Covariates Fun2FunNow Fun2FunGenl

32 replications of lip position and acceleration and
of EMG signal
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The feed–forward model

Only feed–forward effects of EMG on acceleration are of
interest.
The model is

lip(t) = α(t) +

∫ t

t−δ
EMG(s)β(s, t) ds + ε(s)

Regression function β(s, t) is defined over the triangular
region 0 ≤ s ≤ t ; 0 ≤ t ≤ 0.7.
How far back should we allow for an influence? How large
should the lag δ be?
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The correlation surface
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The finite element basis for β(s, t)

The finite element basis for functions defined over two
arguments uses piece–wise linear functions defined over a
triangular mesh.
Triangular meshes can easily adapt to complex
boundaries. Our problem here is particularly easy.
The coefficient matrices become more and more sparse as
the number of triangles increases.
Sparse matrix computation, available in Matlab, makes for
fast solutions.
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A triangular mesh for the lip/EMG problem
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The regression function surface for lag δ = 5
triangles
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Standard error of estimate functions for various
lags
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Summary

When both response and covariates are functional, there
are a lot of modelling possibilities.
Using the full variation in a functional covariate z(s) is only
useful if we regularize the solution, either at the level of the
regression coefficient β(s, t), or at the level of the response
y(t).
Using the full variation in the covariate usually only makes
sense for periodic problems.
A feed–forward model is more likely for nonperiodic
functional regressions.
Estimating the amount of functional history to use is an
important issue.
There is a lot more work to do in this exciting area!
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Where to we go from here?

What if we want to use derivatives, Dy(t) and Dz(t), in our
models?
What about functional variables that interact with each
other, such as we find in input/output systems with
feedback?
Nonlinear functional models?
We have only tickled the ear of the elephant.
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