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1 Introduction

Differential equations model change in a process by linking the behavior of
a derivative to the behavior of the process itself and, possibly, to one or more
exogenous inputs. Perhaps the grande dame of such dynamic models is F = Ma
connecting the rate of change of velocity a of a body in motion to an exogenous
force F and mass M . In fact, functional covariates like F are often called forcing
functions, perhaps out of deference to this equation and Newton.

Current methods for estimating differential equations (DIFE’s) from noisy
data are slow, uncertain to provide the best results, and do not lend themselves
well to statistical techniques such as interval estimation and inference. As a
consequence, one sees little evidence of the impact of statistics in fields routinely
using DIFE models. This paper describes a method that uses noisy data to
estimate the parameters defining a system of nonlinear differential equations.
The approach is based on a modification of data smoothing methods along with
a generalization of profiled estimation.

1.1 Some notation and background

Let x be a function varying over time t, that is possibly vector-valued, and that
has first derivative values Dx(t). Let u be a vector containing one or more
forcing functions and let θ be a vector of parameters defining a differential
equation. Then a general formulation for a differential equation is

Dx(t) = f(x,u, t|θ). (1)

In most cases the mapping f will only depend on t through x(t) and u(t), in
which case the system is called autonomous. Systems involving higher order
derivatives Dmx are reducible to this first order form by defining new variables,
x1 = x,x2 = Dx1 and so on up to xm−1 = Dm−1x.

Let n denote the total number of equations in the system after expanding
the system in this way. In many applications, n may be impressive; fifty is
not unusual in modelling polymer production, for example. Of these variables,
moreover, only a subset, and sometimes a small subset, may be measured or ob-
served. Of those for which data are available, sampling rates and observational
error variances can be diverse.
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Most differential equation systems that are used in practice in fields such
as biology, chemical engineering, pharmacokinetics, physics and physiology are
not solvable analytically. The main exceptions are linear systems with constant
coefficients, where the machinery of the Laplace transform and transform func-
tions plays a role, and a statistical reference to this special case is Bates and
Watts (1988). Discrete versions of such systems, that is systems of difference
equations for equally spaced time points, are well treated in the classical time
series ARIMA and Kalman filter literature, and will not be considered further
here.

The numerical methods most often used to approximate solutions of DIFE’s
over a range [t0, t1] use fixed initial values x0 = x(t0) and adaptive discretization
techniques. Systems for which solutions beginning at varying initial values tend
to converge to a common trajectory are called stiff, and require special methods
that make use of the Jacobian ∂f/∂x.

1.2 Current estimation strategies

Ignoring the simple linear constant coefficient DIFE, the standard approach for
fitting general differential equations to data, often referred to by textbooks as
nonlinear least squares or NLS method, goes as follows. A numerical method is
used to approximate the solution given a trial set of parameter values and initial
conditions, a procedure referred to in engineering circles as simulation. The fit,
usually defined as the sum of squared differences between data and solution,
is then input into an optimization algorithm to update parameter estimates
and the initial conditions. That is, the initial state of the system must often
be estimated along with the parameters defining the system. This approach is
built into the widely used Simulink system in MATLAB, for example. There are
a number of variants on this theme; any numerical method could conceivably
be used with any optimization algorithm. The most conventional of these are
Runge-Kutta integration methods, employed with gradient descent in the survey
paper, Biegler et al. (1986), and with a Nelder-Mead simplex algorithm in
Fussmann et al. (2000). Bock (1983) proposes a multiple shooting method
tied to Gauss-Newton minimization. A similar approach is followed in Li et al.
(2005). This has been extended to systems of partial differential equations in
Müller and Timmer (2004).

The NLS procedure has many problems. It is computationally intensive
since a numerical approximation to a possibly complex process is required for
each update of parameters and initial conditions, the size of the parameter set
is increased by the set of initial conditions needed to solve the system, the
inaccuracy of the numerical approximation is added to that of the data so as to
further degrade parameter estimates. This approach also only produces point
estimates of parameters, and where interval estimation is needed, a great deal
more computation is required. As a consequence of all this, Marlin (2000)
warns process control engineers to expect an error level of the order of 25% in
parameter estimates.

A particular concern with such optimization procedures is the presence of
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local minima in the fit surface. The existence of many such local minima has
been commented on in Esposito and Floudas (2000) and a number of computa-
tionally demanding algorithms proposed to overcome this problem. A common
approach in practise has been the use of simulated annealing methods to find
global minima. This has been particularly computationally intensive; Jaeger
et al. (2004) reported using weeks of computation to reach a point estimate.

An alternative, indirect, approach is available when all components x of
the system are measured. This is to approximate Dx using the data y and
then choose θ to minimize the discrepancy between D̂x and its predicted value
f(x,u, t|θ). This has been suggested in Voss et al. (1998) using finite difference
methods to approximate D̂x and in Varah (1982) using smoothing spline meth-
ods. This approach, while computationally attractive, suffers from the drawback
that approximations to Dx are frequently both noisy and biassed. This can lead
to biassed parameter estimates and the method still does not provide interval
estimates.

A Bayesian approach which avoids the problems of local minima is suggested
in chapter 20 of Gelman et al. (2004). The authors set up a model where obser-
vations yt at times t conditional on the parameters and the initial conditions θ
are modelled with a density centered on the numerical solution to the differential
equation, g(θ, t). For example yt|θ ∼ N(g(θ, t), σ2). Since g(θ, t) has no closed
form solution, the posterior density for θ has no closed form and inference must
be based on simulation from a Metropolis-Hastings algorithm or other sampler.
At each iteration of the sampler θ is updated and g(θ, t) is numerically calcu-
lated conditional on the latest parameter estimates. Our method is similar to
a Bayesian method in that we usually have prior information about the form
of the DIFE and we wish to combine that information with the data to pro-
duce parameter estimates. However, we differ in that we use profiling instead
of conditioning and avoid the need for a numerical solution to the DIFE.

Our approach may be thought of as a mid-way point between the approaches
of simulation and indirect estimation. We will produce a spline fit to the data.
However, we will use the differential equation as a smoothing operator. This will
ensure better estimates of Dx, provide a computationally tractable procedure
and allow us to model situations in which some components are not measured.

1.3 An overview of the paper

In the next Section, we extend this brief introduction by describing two differ-
ential equation systems that are of interest in chemical engineering and neu-
roscience. These systems were chosen with a view to pointing out a range of
practical issues and also because fitting them to data has posed a range of
important computational and statistical challenges.

Our approach to fitting differential equation models is developed in Section
3, where we develop the concepts of estimating functions and a generalization
of profiled estimation. Section 4 follows up with some results on limiting be-
havior of estimates as the smoothing parameters increase, and discusses some
heuristics.
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Sections 5 and 6 show how the method performs in practice. Section 5
uses simulated data for the two test bed problems in Section 2, and Section 6
estimates differential equation models for data drawn from chemical engineering
and medicine. Generalizations of the method are discussed in Section 7 and some
open problems in fitting differential equations are given in Section 8.

2 Two test bed problems

2.1 The neural spike potential equations

These equations were developed by FitzHugh (1961) and Nagumo et al. (1962)
as simplifications of the Hodgkin and Huxley (1952) model of the behavior of
spike potentials in the giant axon of squid neurons. The simplified equations
reduce a description of four ion channels to a two-component system describing
the reciprocal dependencies of the voltage V across an axon membrane and a
recovery variable R reflecting outward currents, and the impact of a time-varying
external input g Wilson (1999).

The equations are

V̇ = c

(
V − V 3

3
+ R

)
+ g(t)

Ṙ = −1
c

(V − a + bR)

where θ = {a, b, c} are unspecified parameters. Although not intended to pro-
vide a perfect fit to observable data, solutions to the FitzHugh-Nagumo exhibit
behavior that is typical of many dynamical systems. The R equation is the sim-
ple constant coefficient system Ṙ = −(b/c)R linearly forced by V and a constant.
However, V is nonlinear; when V > 0 is small, V̇ ≈ cV and consequently ex-
hibits nearly exponential increase, but as V passes ±√3, the influence of −V 3/3
takes over and turns V back toward 0. Consequently, unforced solutions, where
g(t) = 0, exhibit periodic behavior that combines relatively linear motion with
sharp changes in direction. Figure 1 gives a sample path from these equations.
The existence of limit cycle, and how it varies as a function of parameters a, b
and c, affords a useful study of the properties of these systems.

The FitzHugh-Nagumo system also strikingly demonstrates the difficulty of
minimizing over a response surface defined by a differential equation. An exam-
ple surface obtained by varying only the parameters a and b of the FitzHugh-
Nagumo equations is provided in Figure 2. The features of this surface include
“ripples”, due to changes in the shape and period of the limit cycle and breaks
due to bifurcations, or sharp changes in behavior.

2.2 The tank reactor equations

A continuously stirred tank reactor, or a CSTR, consists of a tank surrounded
by cooling jacket and an impeller which stirs the contents. A fluid is pumped
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Figure 1: Sample paths from the unforced FitzHugh-Nagumo equations on the
interval [0 20]. V represents voltage across an axon membrane and R gives
outward currents in ion channels.
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Figure 2: The squared difference between solutions of the FitzHugh-Nagumo
equations as a and b are varied around “true” values of 0.2 and 0.2.
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into the tank containing a reagent with concentration Cin at a flow rate Fin and
temperature Tin. Inside the tank a reaction takes place, producing a product
that leaves the tank with concentration Cout and temperature Tout. A coolant
enters the cooling jacket with temperature Tcool and flow rate Fcool.

The differential equations used to model a CSTR, taken from Marlin (2000)
and simplified by setting the volume of the tank to one, are

DCout = −βCC(Tout)Cout + FinCin

DTout = −βTT (Fcool, Fin)Tout + βTC(Tout)Cout

+FinTin + α(Fcool)Tcool. (2)

The input variables play two roles in the right sides of these equations: Through
added terms such as FinCin in the concentration equation, and via the weight
functions βCC , βTC , βTT and α that multiply the output variables and Tcin,
respectively. These time-varying multipliers depend on four system parameters
in the follow way:

βCC(Tout, Fin) = κ exp[−104τ(1/Tout − 1/Tref )] + Fin

βTT (Fcool, Fin) = α(Fcool) + Fin

βTC(Tout) = 130βCC(Tout, Fin)
α(Fcool) = aF b+1

cool /(Fcool + aF b
cool/2), (3)

where Tref a fixed reference temperature within the range of the observed tem-
peratures, and in this case was 350 deg K. These functions are defined by two
pairs of parameters: (τ, κ) defining βCC and (a, b) defining α. The factor 104 in
βCC rescales τ so that all four parameters are within [0.4, 1.8]. These parame-
ters are gathered in the vector θ in (1), and determine the rate of the chemical
reactions involved, or the reaction kinetics.

The plant engineer needs to understand the dynamics of the two output
variables Cout and Tout as determined by the five inputs Cin, Fin, Tin, Tcool and
Fcool. A typical experiment designed to reveal these dynamics is illustrated in
Figure 3, where we see each input variable stepped up from a baseline level,
stepped down, and then returned to baseline. Two baseline levels are presented
for the most critical input, the coolant temperature Tcool.

The behaviors of output variables Cout and Tout under the experimental
regime, given certain values of the four parameters, are shown in Figure 4.
When the reactor runs in the cool mode, where the baseline coolant temper-
ature is 335 degrees Kelvin, the two outputs respond smoothly to the step
changes in all inputs. However, an increase in baseline coolant temperature by
30 degrees Kelvin generates oscillations that come close to instability when the
coolant temperature decreases, which would be undesirable in an actual indus-
trial process. These perturbations are due to the double impact of a decrease in
output temperature, which increases the size of both βCC and βTC . Increasing
βTC raises the forcing term in the T equation, thus increasing temperature. In-
creasing βCC makes concentration more responsive to changes in temperature,
but decreases the size of the response. This push–pull process has a resonant
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Figure 3: The five inputs to the chemical reactor modelled by the two equations
(2): flow rate F (t), input concentration C0(t), input temperature T0(t), coolant
temperature Tcin(t) and coolant flow F0(t).

frequency that depends on the kinetic constants, and when the ambient oper-
ating temperature reaches a certain level, the resonance appears. For coolant
temperatures either above or below this critical zone, the oscillations disappear.

The engineer generally does not know the four reaction kinetic parameters,
and therefore must estimate them from noisy data in order to estimate the
cooling temperature range to avoid. Figure 5 indicates the nature of the data
that may be available. These were simulated by adding zero mean Gaussian
noise to numerical estimates of the solutions C(t) and T (t) of the equations for
values of the parameters given in Marlin (2000): κ = 0.461, τ = 0.833, a = 1.678
and b = 0.5. The standard deviations of the errors were 0.2 times the standard
deviations of each of the variable values across a fine mesh of time values. That
is, the observational error was roughly 20% of the variable values, an error level
that is considered typical for this process.

Temperature measurements are relatively cheap and accurate relative to
those for concentration, and the engineer may wish to base his estimates on
these alone, in which case concentration effectively becomes a functional latent
variable. Naturally, it would be wise to use data collected in the stable cool
experimental regime in order to predict the response in the hot reaction mode.
In any case, the actual behavior of the data may not match the behavior of an
exact solution of the differential equations for even the best-fitting parameter
values, and it will be of interest to explore the lack of fit in various ways with
the possible aim of altering the equations themselves.
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Figure 4: The two outputs from the chemical reactor modelled by the two
equations (2): concentration C(t) and temperature T (t). Times at which an
input variable is changed are shown as vertical dotted lines.
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Figure 5: Simulated data for the two outputs from the chemical reactor modelled
by the two equations (2): concentration C(t) and temperature T (t).
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3 The estimation procedure

An overview is as follows. For each solution xi in x, we define a basis function
expansion c′iφi, where ci and φi are a coefficient vector and a vector of basis
functions, respectively. A data-fitting criterion F (y|x) is chosen that measures
the fidelity of x to the data in vector y. The extent to which x is a solution
of the differential equation system is assessed by the use of additional penalty
terms, and the relative balance between these two desiderata is controlled by a
set of smoothing parameters.

This approach implies that there are two classes of parameters to estimate:
the parameters θ defining the equation, such as the four reaction kinetics pa-
rameters in the CSTR equations; and the coefficients ci defining each basis
function expansion. The equation parameters are structural in the sense of
being of primary interest, but the coefficients ci are considered as nuisance pa-
rameters that are essential for fitting the data because they are not of direct
concern and because their numbers are apt to vary with the length of the obser-
vation interval, density of observation, and other factors. As a rule, the number
of nuisance parameters can be orders of magnitude larger than the number of
equation parameters, with a ratio of about 100 applying in the CSTR problem.

Nuisance parameters are removed from the problem by defining them as
functions of the structural parameters using a modified profiling procedure, and
the composite fitting criterion is then optimized with respect to the the struc-
tural parameters alone. An analytic expression for the gradient is developed
using the Implicit Function Theorem. Each of these steps will now be described
in more detail.

3.1 Basis function expansions for the solution functions

We assume that each output function xi, i = 1, . . . , n is represented as a basis
function expansion

xi(t) = c′iφi(t) = φi(t)
′ci. (4)

The vector of basis functions φi is of length Ki, as is the corresponding coeffi-
cient vector ci.

The number of basis functions as well as other aspects of the system must
permit the model to accommodate any important variation in an actual solu-
tion. Moreover, since the equations involve one or more derivatives, the expan-
sion must also have the capacity to be faithful to the behavior of the highest
order derivative in the system. Although solutions to linear constant coefficient
differential equations systems are sums of exponential functions and therefore
smooth, nonlinear systems may give rise to solutions that have extremely sharp
features, such as peaks, valleys, high frequency oscillations and near discontinu-
ities in derivatives. Moreover, even linear systems are often forced in industrial
settings by step changes in control systems, and these lead to sharp changes for
first and higher derivatives. Splines are usually the basis of choice, but it may
be advantageous to use multiple knots at certain critical locations, such as step

9



changes in inputs. A successful allocation of knots may require a preliminary
exploration of the system initial estimates of parameters, possibly accompanied
by updates of the knot sequence as the estimation process proceeds. If equally
spaced knots are used, it may useful to begin with a very large number of these,
followed by reducing knot density where appropriate.

We assume that the forcing functions in vector u are known exactly, although
in practice these also may arise from smoothing noisy data, and the method
that we use can easily be extended to accommodate this case. The step-wise
definition of these functions that we see in the CSTR equations (2) is not at all
unusual in actual experiments, where the dynamics of the response to a sudden
change in input due, perhaps, to the failure of some component, can be of direct
concern. Such discontinuities in input can imply corresponding discontinuities
in a derivative of an output. For this reason, spline bases may be the best
choice since multiple knots assigned to the time of a input step change can
accommodate this feature nicely. For the data shown in Figure 5, where each
variable was observed every 20 seconds, the resulting B-spline basis systems
each had Ki = 193 basis functions.

If we need to refer to all n output functions simultaneously, we will use
the notation x to refer to the vector of n output functions. Let c indicate the
composite vector (c′1, . . . , cn)′ of length

∑
i Ki, and let Φ be the

∑
i Ni by

∑
i Ki

super–matrix constructed by placing the matrices Φi along the diagonals and
using zeros elsewhere. According to this notation, we have the composite basis
expansion x = Φc.

3.2 The data fitting criterion

The output variables xi will as a rule have different units; the concentration
of the output in the CSTR equations is a percentage, while temperature is in
degrees Kelvin. Consequently, each error sum of squares must be multiplied
by a normalizing weight wi so that the normalized error sums of squares are
of roughly comparable sizes. Suitable weights may be the reciprocals of initial
values wi = xi(0) or of the variance taken over values xi(tij) for some trial or
initial estimate of a solution of the equation.

Let yi indicate the data available for variable i consisting of observations at
time points ti, and let y indicate the total data available. The notation xi(ti)
is used for the vector of fitted values corresponding to yi. The composite fit
measure using error sum of squares is

SSE(y|x) =
n∑

i

wi‖yi − xi(ti)‖2. (5)

The summation over variables is only over the variables for which observations
are available; it will be routine that only certain variables in the system are
actually measured. If the weighted least squares criterion (5) is used, then the
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normalization can be incorporated into the design of the weight matrix Wi in

SSE(y|x) =
n∑

i

[yi − xi(ti)]′Wi[yi − xi(ti)]. (6)

Finally, many applications will require loss functions other than error sum of
squares, and our approach can accommodate these situations without difficulty.

3.3 Assessing fidelity to the equations

We may express each equation in (1) as the differential operator equation

Li(xi) = Dxi − fi(x,u, t|θ) = 0. (7)

The extent to which an actual function xi satisfies the DIFE system can then
be assessed by

PENi(x) = wi

∫
[Li(xi)]2dt (8)

where the integration is over an interval which contains the times of measure-
ment. The normalization constant wi is required here, too, to allow for different
units of measurement. Of course other norms are also possible, and total vari-
ation, defined as

PENi(x) = wi

∫
|Li(xi)|dt (9)

has turned out to be an important alternative in situations where there are
sharp breaks in the function being estimated (Koenker and Mizera (2002)).

A composite fidelity to equation measure is

PEN(x|L,λ) =
n∑

i

λiPENi(x) (10)

where L is denotes the vector containing the n differential operators Li. Note
that in this case the summation will be over all n variables in the equation. The
multipliers λi ≥ 0 permit us to weight fidelities differently, and also control the
relative emphasis on fitting the data and solving the equation for each variable.

Finally, the data-fitting and equation-fidelity criteria are combined into the
penalized least squares criterion

PENSSE(y|x,L, λ) = SSE(y|x) + PEN(x|λ) (11)

Although this formulation may resemble the data smoothing methods based
on roughness penalties or regularization such as those described in Ramsay
and Silverman (2005), in fact the perspective is now much more symmetric
in data fitting versus equation solving. In a sense, we may say that the data
fitting criterion SSE(y|x) data-regularizes the differential solution that would be
defined if we only paid attention to reducing each PENi(x) to zero.
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3.4 Estimating c(θ)

The parameters in c defining the fitting functions xi, i = 1, . . . , n or x(c), may
be regarded as nuisance parameters, meaning that they are essential to fit the
data, but are not of direct interest. By contrast, the structural parameters θ will
usually be of more central interest, although, of course, confidence regions and
other inferential issues concerning x may also prove useful. Vector c, moreover,
will tend to be far larger than θ, since DIFE solutions often exhibit sharp local
behavior, as we saw with the CSTR equations, that can require large numbers
of basis functions to capture.

Consequently, joint estimation of both θ and c is likely to be unwise since
the parameter space is apt to be of exceedingly high dimensionality, and the
θ estimates are likely to be unstable due to the limited number of degrees of
freedom for error that will be left in the data. The usual marginalization strategy
involving numerical integration over c with respect to some prior measure is also
problematic since computational overhead involved is apt to be unacceptable.

Instead, we adopted a generalized profiling strategy, involving minimizing the
penalized error sum of squares (11) each time any element of θ is changed. That
is, our approach is to embed an inner optimization where c alone is updated
within an outer optimization loop optimizing θ. To keep the notation compact
and to emphasize that c is optimized conditional on a value for θ, we now use
the notation H(c|θ,y) for (11), and also h = DH, the gradient of H taken with
respect to c.

In effect, then, the inner optimization defines an estimating function c(θ), if
we can assume that the conditional minimum of H(c|θ,y) is unique for a neigh-
borhood of the optimal θ containing the values of θ that will be encountered
during the outer optimization. In this way, the dimension of the parameter
space is now reduced to that of θ. For example, in our analysis of the CSTR
equations, this amounts to reducing the dimensionality from 4 + 193× 2 = 390
to 4.

3.5 Outer optimization for θ

The outer optimization with respect to θ minimizes the unpenalized composite
error sum of squares (5), that is, the data-fitting criterion. There is no need
to append a roughness criterion taking into account fidelity to the equations
since this is already taken care of in the definition of c(θ). We use the notation
F (θ, c(θ)|y) to refer to SSE[y|x = c′(θ)Φ], the notation f = DF for its gradient
and θ̂ = argmin{F (θ, c(θ)|y)}. It is assumed that F is twice continuously
differentiable with respect to both θ and c, and that the second partial derivative
or Hessian matrices

∂2F

∂θ2 and
∂2F

∂c2

are positive definite over a nonempty neighborhood N of y in data space.

12



The gradient f(θ) is

f(θ) =
∂F

∂θ
+

∂F

∂c
dc
dθ

. (12)

Since c(θ) is not available explicitly, we need the implicit function theorem
to define dc/dθ. To keep the notation compact, we will no longer include y
explicitly as an argument for the functions F or H. The optimal value of c will
satisfy h(c|θ) = 0, and we have that

Dθh =
∂h

∂θ
+

∂h

∂c
dc
dθ

= 0.

Therefore
dc
dθ

= −(∂h

∂c

)−1 ∂h

∂θ
= −(∂2H

∂c2

)−1 ∂2H

∂c∂θ
. (13)

and

f(θ) =
∂F

∂θ
− ∂F

∂c

(∂2H

∂c2

)−1 ∂2H

∂c∂θ
. (14)

The matrices used in these equations and those below have often complex ex-
pressions in terms of the basis functions in Φ and the functions f on the right
side of the differential equation. Appendix A provides explicit expressions for
them.

3.6 Approximating the variation in θ̂ and ĉ

Let Σ be the variance–covariance matrix for y, The estimate θ̂(y) of θ is the
solution of the stationary equation f(θ̂, ĉ|y) = 0 where ĉ = c(θ̂). Here and
below, all partial derivatives as well as total derivatives are assumed to be
evaluated at θ̂ and ĉ, which are in turn evaluated at y.

The usual δ-method employed in nonlinear least squares produces a variance
estimate of the form

(JT ΣJ)−1

where J is the Jacobian matrix given by dxk(ti)/dθj , concatenated row-wise
across the components of x. This makes use of the approximation

d2F

dθ2 ≈ JT J.

Such an approximation may not be warranted when there is large curvature in
parameter space. We will instead provide an exact estimation of the Hessian
above and employ it with a pseudo δ-method. This is undertaken at the cost
of considerably more computation. Our experiments in Section 5.1 suggest that
this method provides more accurate results that the usual estimate, but that
the latter will still provide a reasonable approximation.
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By applying the Implicit Function Theorem to DθF as a function of y, we
may say that for any y inN there exists a value θ(y) such that f [θ(y), c(θ(y))|y] =
0. Consequently

D2
θ,yF =

∂DθF

∂y
+ D2

θF
dθ

dy
= 0, (15)

where

D2
θF (θ̂, ĉ|y) =

∂2F

∂θ2 +
∂2F

∂c∂θ

∂c
∂θ

+
∂2F

∂c2

[ ∂c
∂θ

]2 +
∂F

∂c
∂2c
∂θ2

and

D2
θ,yF (θ̂, ĉ|y) =

∂2F

∂θ∂y
+

∂2F

∂c∂y
∂c
∂y

∂c
∂θ

+
∂F

∂c
∂2c

∂θ∂y
.

Now to a first order of approximation over N , we can approximate θ(y∗)
evaluated at an alternative observation y∗ ∈ N by

θ(y∗)− θ(y) ≈ dθ

dy
(y∗ − y)

= [D2
θF (θ̂, ĉ|y)]−1D2

θ,yF (θ̂, ĉ|y)(y∗ − y). (16)

Consequently, the variance of θ̂(y) can be estimated by

Var[θ̂(y)] = Z(θ̂, ĉ|y)ΣZ′(θ̂, ĉ|y),

where
Z(θ̂, ĉ|y) = [D2

θF (θ̂, ĉ|y)]−1D2
θ,yF (θ̂, ĉ|y).

The sampling variance of c(θ̂(y)|y) is estimated by

Var[c(θ̂(y)|y)] =
( ∂c
∂θ

)
Var[θ̂]

( ∂c
∂θ

)′ + ( ∂c
∂y

)Σ
( ∂c
∂y

)′.

3.7 Numerical integration

The integrals in PENi will normally require approximation by the linear func-
tional

PENi(x) ≈ wi

Q∑
q

vq[Li(xi(tq))]2 (17)

where Q, the evaluation points tq and the weights vq are chosen so as to yield
a reasonable approximation to the integrals involved.

Let ξ` indicate a knot location or a breakpoint. It may be that there will
be multiple knots at such a location in order to deal with step function inputs
that will imply discontinuous derivatives. We consider that normally these
breakpoints will usually be at times tij of observation of output variable xi.

We have obtained satisfactory results by dividing each interval [ξ`, ξ`+1] into
four equal-sized intervals, and using Simpson’s rule weights [1, 4, 2, 4, 1](ξ`+1 −
ξ`)/5. The total set of these quadrature points and weights along with basis
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function values may be saved at the beginning of the computation so as to save
time. If a B-spline basis is used, great improvements in speed of computation
are achieved by using the sparse matrix methods in Matlab.

Efficiency in the inner optimization is essential since this will be invoked far
more often than the outer optimization. The minimization of penalized least
squares criterion (11), can be expressed as a large nonlinear least squares ap-
proximation problem by observing that we can express the numerical quadrature
approximation to

∑
i λiPENi(x) as
∑

i

∑
q

[0− (λiwivq)1/2Li(xi(tq))]2 .

These squared residuals can then be appended to those in SSE(y), and Gauss-
Newton minimization can then be used. In those situations where the coeffi-
cients enter linearly into the expression for the fitting function, the inner opti-
mization can be avoided entirely by using the explicit solution.

4 Choosing the amount of smoothing

Recall that the central goal of this paper is to estimate parameters, rather than
to smooth the data. This means that traditional approaches to the choice of
smoothing parameter, such as those based on cross validation, may no longer
be appropriate. The theory derived in Section 4.1, suggests that when the data
agree well with the DIFE model, the λi should be chosen as large as possible,
bounded only by the possibility of distortion from our choice of basis expansion
(4).

In our experience, however, real world systems are rarely perfectly described
by DIFEs. In such situations, we may wish to make the λi smaller, in order to
be able to account for systematic discrepancies between DIFE solutions and the
data. In this sense, the amount of smoothing provides a continuum of solutions
representing trade-offs between the problem of estimating θ and fitting the data
well. For each value of the λi, we are given two fits to the data; the smooth
x at the estimated θ̂ and the set of exact solutions to the DIFE at θ̂. The
discrepancy between these two will decrease as λi increases and can be viewed
as a diagnostic for lack of fit in the model.

The degree of smoothing also affects the numerical properties of our estima-
tion scheme. Typically, larger values of λi make the inner optimization harder,
increasing the number of Gauss-Newton iterations required. Smaller values also
appear to make the response surface for the outer optimization more convex,
a point discussed further in Section 4.2. This suggests a scheme of estimating
θ̂ at increasing amounts of smoothness in order to overcome the local minima
seen in Figure 2.
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4.1 Behavior as λ →∞
In this section, we consider the behavior of our parameter estimate as λ becomes
large. This analysis takes an idealized form in the sense that we assume that
this optimization may be done globally and that the function being estimated
can be exactly expressed as a spline basis function expansion, and therefore does
not have approximation error. We show that as λ becomes large, the estimates
defined through our profiling procedure converge to the estimates that we would
obtain if we estimated θ by minimizing squared error over both θ and the initial
conditions x0. In other words, we treat x0 as nuisance parameters and estimate
θ by profiling. This approach corresponds to a maximum likelihood estimate of
θ assuming Gaussian errors. When f is Lipschitz continuous in x and continuous
in θ, the likelihood is continuous in θ and the usual consistency theorems (e.g.
Cox and Hinkley (1974)) hold and in particular, the estimate θ̂ is asymptotically
unbiassed.

For the purposes of this section, we will make a few simplifying conventions
Firstly, we will take:

SSE(x) = SSE(y|x).

Secondly, we will represent

PEN(x|θ) =
n∑

i=1

ciwi

∫
(Dxi(t)− fi(x,u, t|θ))2 dt

where the ci are taken to be constants and the λi used in the definition (10) are
given by λci for some λ.

We will also assume that solutions to the problem (1) exist and are well
defined, and therefore that there are objects x that satisfy PEN(x|θ) = 0. This
is guaranteed locally by the following theorem adapted from Bellman (1953):

Theorem 4.1. Let f be Lipschitz continuous and u differentiable almost every-
where, then the initial value problem:

Dx(t) = f(x,u, t|θ), x(t0) = x0

has a unique solution.

Finally, we will need to make some assumptions about the spline smooths
minimizing

SSE(x) + λPEN(x|θ).

Specifically, we will assume that the minimizers of these are well-defined and
bounded uniformly over λ. Guarantees on boundedness may be given for when-
ever x · f(x,u, t|θ) < 0 for ‖x‖ greater than some K. This is true for reasonable
parameter values in all systems presented in this paper. More general charac-
teristics of functions f for which these properties hold is a matter of continued
research. It seems reasonable, however, that they will hold for systems of prac-
tical interest.
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4.1.1 Preliminaries

The following theorem is a well-known consequence of the method of Lagrange
mutipliers:

Theorem 4.2. Suppose that xλ minimizes F (x) + λP (x), then xλ minimizes
F (z) for z ∈ {x : P (x) < P (xλ)}. Moreover, for λ′ > λ, P (xλ′) ≤ P (xλ).

A two corollaries:

Corollary 4.1. For λ′ > λ, F (xλ′) ≥ F (xλ).

Corollary 4.2. If ∃x such that P (x) = 0, then P (xλ) → 0 as λ →∞.

follow immediately. The following theorem is proved in Appendix B:

Theorem 4.3. Let X and Y be metric spaces with X closed and bounded. Let
g(x, α) : X × Y → R be uniformly continuous in x and α, such that

x(α) = argmin
x∈X

g(x, α)

is well defined for each α. Then x(α) : Y → X is continuous.

4.1.2 The inner optimization

The first step of the analysis is to show that as λ →∞ the solutions of the inner
optimization criterion converge to an exact solution of the differential equation.

We will assume that the solutions of interest lie in the Hilbert space H =
(W 1)n; the direct sum of n copies of W 1 where W 1 is the Sobolev space of
functions on [t1, t2] whose first derivatives are square integrable. This space is
equipped with the inner product

(f, g) =
∫ t2

t1

f(t)g(t)dt +
∫ t2

t1

f ′(t)g′(t)dt.

In particular, point-wise evaluation is a continuous operation on W 1 and hence
on H (Gu (2002)).

Theorem 4.4. Let λk →∞ and assume that

xk = argmin
x∈(W 1)n

SSE(x) + λkPEN(x|θ)

is well defined and uniformly bounded over λ. Then xk converges to x∗ with
PEN(x∗|θ) = 0.

Proof. We first note that we can re-express xk as

xk = argmin
x∈(W 1)n

(1− αk)SSE(x) + αkPEN(xk|θ) (18)

where αk = λk/(1 + λk) → 1.
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By the continuity of point-wise evaluation in (W 1)n, SSE(x) is a continuous
functional of x and PEN(x|θ) is similarly continuous. Since the xk lie in a
bounded set X , we have that

SSE(x) < F ∗ and PEN(x|θ) < P ∗

for all x ∈ X . Both SSE(x) and PEN(x|θ) are bounded below by 0 and we note
that

g(x, α) = (1− α)SSE(x) + αPEN(x|θ)

is uniformly bounded on C by 0 and F ∗ + P ∗ and is therefore uniformly contin-
uous in α and x.

By Theorem 4.3,
x(α) = argmin

x∈C
g(x, α)

is a continuous function from (0, 1) to (W 1)n. Since ‖x(α)‖ is bounded by
assumption, it is uniformly continuous. Since αn → 1 is convergent, we must
have that xn = x(αn) → x∗. By the continuity of PEN(x|θ), PEN(x∗|θ) = 0.

Note that if it were possible to define x(α) as a continuous function on [0, 1], the
need for a bound on ||x(α)|| would be removed. However, since we do not expect
g(x, 1) = PEN(x|θ) to have a well-defined minimum, boundedness is required to
ensure that x(α) has a limit as α → 1.

We can now go further when PEN(x|θ) is given by (10), by specifying that x∗

is the solution of the differential equations (1) that is obtained by minimizing
squared error over the choice of initial conditions. To see this, we observe that
Theorem 4.1 ensures that

Dx(t) = f(x,u, t|θ).

with
x(t0) = x0

specifies a unique element of (W 1)n. Let

F = {x, PEN(x|θ) = 0},
then

lim
k→∞

SSE(xn) ≤ min
x∈F

SSE(x).

Since SSE is a continuous functional on (W 1)n, and PEN(x∗|θ) = 0, we must
have

SSE(x∗) = min
x∈F

SSE(x).

By the assumption that the solutions to (18) are well defined and bounded, this
specifies a unique set of initial conditions x∗0 such that

Dx∗(t) = f(x∗,u, t|θ).

with
x∗(t0) = x∗0.
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4.1.3 The outer optimization

For the problem of estimating θ we need to again assume that well-defined
solutions to

θ(λ) = argmin
θ∈Θ

SSE(xλ,θ)

exist where x
λ,θ is now also indexed by candidate parameter values θ. In

particular, we assume that

θ∗ = argmin
θ

SSE(x∞,θ),

the least-squares estimate of θ obtained by directly solving the differential equa-
tion, is well defined.

In this section we will show that limλ→∞ θ(λ) = θ∗ provided we can bound
θ(λ) uniformly. As with the bounds required on x, conditions on functions
f(x,u, t|θ) that guarantee this regularity are a matter of ongoing investigation.

Theorem 4.5. Let X ⊂ (W 1)n and Θ ⊂ Rp be bounded. Let

xθ,λ
= argmin

x∈X
SSE(x) + λPEN(x|θ)

be well defined for each θ and λ, define x∗θ to be such that

SSE(x∗θ) = min
x:P (x|θ)=0

SSE(x)

and let
θ(λ) = argmin

θ∈Θ

SSE(xθ,λ
) and θ∗ = argmin

θ∈Θ

SSE(x∗θ)

also be well defined for each λ. Then

lim
λ→∞

θ(λ) = θ∗

Proof. The proof is very similar to that of Theorem 4.4. Setting α = λ/(1 + λ)

g(x, α, θ) = (1− α)SSE(x) + αPEN(x|θ)

is uniformly continuous in α, θ and x. As observed in Theorem 4.4, xθ,λ can
be equivalently written as

xθ,α
= argmin

x∈(W 1)k

g(x, α, θ).

with α = λ/(1 + λ). By Theorem 4.3, xθ,α
is continuous in θ and α. On the

set X , therefore, SSE(x) is uniformly continuous in x and xθ,α
is uniformly

continuous in θ and α. SSE(xθ,α) is therefore uniformly continuous in θ and α.
Under the assumption that θ(α) is well defined for each α, we can now employ
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Theorem 4.3 again to give us that θ(α) is continuous in α and the boundedness
of Θ provides uniform continuity.
Assume that

θ̃ = lim
α→1

θ(α) 6= θ∗

and in particular ‖θ̃− θ∗‖ > ε. From Lemma B.1 there must exist a δ > 0 such
that

SSE(x∗θ∗) < SSE(x∗θ)− δ.

for all ‖θ − θ∗‖ > ε/2. Since θ(α) is uniformly continuous in α, there is some
a such that ‖θ(α)− θ∗‖ > ε/2 for all α > a. Now by the uniform continuity of
SSE(xθ,α) in α and θ, we can choose a1 > a so that

∣∣∣SSE(xθ(α),α)− SSE(x∗θ)
∣∣∣ < δ/3

for all α > a1. By the same uniform continuity, we can choose α > a1 so that

|SSE(xθ∗,α)− SSE(x∗θ∗)| < δ/2

giving
SSE(xθ∗,α

) < SSE(xθ(α),α
)

contradicting the definition of θ(α). Finally, note that α is also uniformly
continuous in λ and limλ→∞ α(λ) = 1.

4.2 Heuristics for robust estimates

We believe that our method provides a computationally tractable parameter
estimate that is numerically stable and easy to implement. It has also been
our experience that these estimates are robust with respect to starting values
for the optimization procedure. Figure 6 plots surfaces similar to Figure 2 but
providing the squared error of the spline fit as parameters a and b are varied.
These are given for three different values of λ and it can be seen that for smaller
λ, the surfaces are more regular.

We do not have a formal mathematical statement to indicate that these
response surfaces become more regular. As a heuristic, we have already noted
that

SSE(x
λ,θ) ≤ SSE(xθ)

for any xθ that satisfies P (xθ|θ) = 0. The squared error surface at λ is therefore
an underestimate of the response surface for exact solutions to the differential
equation. Moreover, Appendix A provides an expression for the derivative of c
with respect to θ that is of the form

λ [A + λB]−1
C

whose norm increases with λ. Thus these surfaces must be less steep as λ
becomes smaller. This, however, does not demonstrate the observation that
they eventually become convex.
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Figure 6: A comparison of the FitzHugh-Nagumo response surfaces over a and
b for λ = 102, 105 and at exact solutions. Surfaces give the value of the squared
difference between exact solutions at {a, b, c} = {0.2, 0.2, 3} and the spline ap-
proximation to those solutions using exact data and perturbed values of a and
b.

Our experimental evidence suggests that for small values of λ, parameter
estimates tend to be more variable and can become quite biassed. However,
Theorem 4.5 demonstrates that as λ becomes large, the estimates become ap-
proximately unbiassed. This suggests that a scheme that uses a small values of
λ to find a global optimum and then increases λ incrementally may be useful
for particularly challenging surfaces.

5 Simulated data examples

5.1 Fitting the FitzHugh-Nagumo equations

We set up simulated data from the FitzHugh-Nagumo equations as a mathe-
matical test-bed of our estimation procedure. Data were generated by taking
solutions to the equations with parameters {a, b, c} = {0.2, 0.2, 3} and initial
conditions {V,R} = {−1, 1} measured at 0.05 time units on the interval [0,20].
Noise was then added to these data with standard deviation 0.5.

We estimated the smooths for each component using a third order B-spline
basis with knots at each data point. A five-point quadrature rule was used for
the numeric integration. Figure 7 gives quartiles of the parameter estimates for
50 simulations as λ is varied from 10−2 to 105. It is apparent that there is a
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Figure 7: Quartiles of parameter estimates for the FitzHugh-Nagumo Equations
as λ is varied. Horizontal lines represent the true parameter values.

large amount of bias for small values of λ. This is not surprising – the spline
fit is affected very little by θ and, in being very irregular, has high derivatives.
Effectively, we select a fit that nearly interpolates the data and then choose θ to
try to mimic the fit as well as possible. However, as λ becomes large, parameter
estimates become nearly unbiased and tightly centered on the true parameter
values. Table 1 provides bias and variance estimates from 500 simulations at
λ = 104. These are provided along with the estimate of standard error devel-
oped in Section 3.6 and the usual Gauss-Newton standard error. We obtain
good coverage properties for our estimates of variance while the Gauss-Newton
estimates are somewhat less accurate. The estimates based on Section 3.6 re-
quired 10 times the computer time than the standard estimates. Parameter
estimates for a and b are very close to the true values. There appears to be a
small amount of bias for the estimate of c, which we conjecture to be due to the
use of a basis expansion.

5.2 Fitting the tank reactor equations

We now consider how well the parameters and the equation solutions can be
estimated from the simulated data in Figure 5. The smoothing parameters λC

and λT were 100 and 10, respectively.
Table 2 displays bias and sampling precision results for parameter estimates

for 1000 simulated samples. The first two lines of the table compare the true
parameter values with the mean estimates, and the last two lines compare the
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Table 1: Summary statistics for parameter estimates for 500 simulated samples
of data generated from the FitzHugh-Nagumo equations.

a b c
True value 0.2000 0.2000 3.0000
Mean value 0.2005 0.1984 2.9949
Std. Dev. 0.0149 0.0643 0.0264
Est. Std. Dev. 0.0143 0.0684 0.0278
GN. Std. Dev. 0.0167 0.0595 0.0334
Bias 0.0005 -0.0016 -0.0051
Std. Err. 0.0007 0.0029 0.0012

Table 2: Summary statistics for parameter estimates for 1000 simulated samples
from the same population illustrated in Figure 5. The estimate of the standard
deviation of parameter values is by the delta method usual in nonlinear least
squares analyses.

κ τ a
True value 0.4610 0.8330 1.6780
Mean value 0.4610 0.8349 1.6745
Std. Dev. 0.0034 0.0057 0.0188
Est. Std. Dev. 0.0035 0.0056 0.0190
Bias 0.0000 0.0000 -0.0001
Std. Err. 0.0002 0.0004 0.0012

biases of the estimates with the standard errors of the mean estimates. We see
that the biases can be considered negligible. The third and fourth lines com-
pare the actual standard deviations of the estimates with the values estimated
with the usual Gauss Newton method, using the Jacobian with respect to the
parameters, and the two values seem sufficiently close for all three parameters
to permit us to trust the the usual estimate of sampling variance.

The principal components of variation of the correlation matrix for the pa-
rameter estimates account for 85.0, 14.0 and 1.0 percent of the variance, respec-
tively, indicating that, even after re-scaling the parameters, most of the sampling
variation in these three parameters is in only two dimensions. Moreover, the
scatter is essentially Gaussian in distribution, indicating that rotation of the
parameters might be worth considering in order to reduce the dimensionality of
the parameter space. In particular, the correlation between parameters κ and
a is 0.94, suggesting that these may be linked together without much loss in
fitting power.

When the equations were solved using the estimated parameters, the maxi-
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mum absolute discrepancy between the fitted concentration curve and the true
curve was 0.11% of the true curve. The corresponding temperature discrep-
ancy was 0.03%. When these parameter estimates were used to calculate the
solutions in the hot mode of operation, the concentration and temperature dis-
crepancies became 1.72% and 0.05%, respectively. Finally, when the parameters
were estimated from only the temperature data, the concentration and temper-
ature discrepancies became 0.10% and 0.04%, respectively., so that only the
quickly and cheaply attainable measurements of temperature seem sufficient for
identifying this system.

6 Working with real data

6.1 Thermal decomposition of α-Pinene

The compound α-pinene is a component of tea-tree oils and is used in phar-
maceutical and aroma-chemical products. When heated to between 189.5o and
285oC it undergoes a thermal reaction, yielding dipentene and allo-ocimene.
Allo-ocimene further decomposes into α-pyronene and β-pyronene and a dimer.
Fuguitt and Hawkins (1947) provide the results of an experiment in which pure
α-pinene was heated to 189.5oC in an oil bath and the proportions of α-pinene
and the resulting chemicals were measured at eight time intervals. Since mass
must be conserved in the experiment, the data are given as percentages of total
mass. While Fuguitt and Hawkins (1947) reported concentrations for the sum
of the pyronenes, these were calculated from the other measured quantities and
mass balance considerations. We have therefore taken this to be an unmeasured
component.

A number of models and estimation procedures have been attempted for
these data. Stewart and Sorensen (1981) proposed a non-linear model, fit using
a Bayesian procedure. Bates and Watts (1988) chose a linear model but noted
that residual plots indicated systematic deviation from the model. Here we have
chosen to combine the two. Let xi, i = 1, · · · , 4 represent the weight percentage
of α-pinene, dipentene, allo-ocimene and the dimer. We employ the following
nonlinear differential equations:

dx1

dt
= −(θ1 + θ2)x1 − 2θ3x

2
1 (19)

dx2

dt
= θ1x1

dx3

dt
= θ2x1 − θ4x3 − 2θ5x

2
3 − θ7x3 + 2θ6x4

dx4

dt
= θ3x

2
1 + θ5x

2
3 − θ7x3 + θ6x4

(20)

Compounds α- and β- pyronene appear only on the left hand side of their
equation and do not influence any of the right hand side functions. Since they
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Figure 8: Solutions to the differential equation (19) using initial parameter and
initial condition estimates (dashed) and with re-estimated parameters (solid).
The data are given by asterisks.

are unmeasured, their inclusion only makes their initial conditions undetermined
and does not affect the rest of the estimates.

The equations given in Bates and Watts (1988) are equivalent to setting
θ3 = θ4 = θ5 = 0. Stewart and Sorensen (1981) corresponds to θ7 = 0. That
paper also includes terms for pyronene in the derivative of x3. We have found
that, without measurements for pyronene, this system was effectively uniden-
tifiable and have therefore dropped the extra terms from our model. An ap-
proximate initial condition may be given at time zero as having 100% α-pinene
concentration and listing the others as 0.

Using these data, we estimated the seven parameters using the estimates
in Bates and Watts (1988) as starting values. We used 160 equally spaced
knots in each component and set λ = 108. Solving the differential equation
using the theoretical initial conditions, our parameters correspond to a 14%
decrease in total squared error. Allowing the initial conditions to vary and
using the value of the smoothing spline at the first data point resulted in a 35%
decrease in total squared error. Figure 8 compares the exact solution fit to the
differential equation provided in Bates and Watts (1988) with the new fit using
new parameters and new initial values chosen at the first measurement time.

Table 3 presents our parameter estimates and confidence intervals. Here all
confidence intervals apart from that for θ4 do not contain zero. However, the
negative signs for θ3 and θ5 suggests, that the system may remain miss-specified.
An examination of the residuals plotted in Figure 9 indicates systematic bias
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Table 3: Parameter estimates and 95% confidence intervals for the α-pinene
data.

estimate lower bound upper bound
θ1 5.930 ∗ 10−5 5.606 ∗ 10−5 6.255 ∗ 10−5

θ2 3.488 ∗ 10−5 3.002 ∗ 10−5 3.974 ∗ 10−5

θ3 −1.140 ∗ 10−7 −1.698 ∗ 10−7 0.582 ∗ 10−7

θ4 1.145 ∗ 10−5 −0.665 ∗ 10−5 3.574 ∗ 10−5

θ5 −7.775 ∗ 10−5 −8.590 ∗ 10−5 −6.959 ∗ 10−5

θ6 7.780 ∗ 10−5 6.099 ∗ 10−5 9.461 ∗ 10−5

θ7 8.332 ∗ 10−4 8.156 ∗ 10−4 8.508 ∗ 10−4

for individual components, suggesting that the differential equation is still not
exact.

6.2 Modelling flare dynamics in lupus

Lupus is an auto-immune disease characterized by sudden flares of symptoms
caused by the body’s immune system attacking various organs. The name de-
rives from a rash on the face and chest, but the most serious effects tend to be
in the kidneys. The resulting nephritis and other symptoms can require imme-
diate treatment, usually with the drug prednisone, a corticosteroid that itself
has serious long-term side effects.

Various scales have been developed to measure the severity of symptoms, and
Figure 10 shows the course of one of the more popular measures, the SLEDAI
scale, for a patient that experienced 41 flares over about 19 years before expiring.
A definition of a flare event is commonly agreed to be a change in a scale value
of at least 3 with a terminal value of at least 8. The figure shows flare events
as heavy solid lines.

Because of the rapid onset of symptoms, and because the resulting treatment
program usually involves a SLEDAI assessment and a substantial increase in
prednisone dose, we can pin down the time of a flare with some confidence.
Thus, the set of flare times combined with the accompanying SLEDAI score
constitute a marked point process. Our goal here is to illustrate a simple model
for flare dynamics, or the time course of symptoms over the onset period and the
period of recovery. We hope that this model will also show how these short-term
flare dynamics interact with longer term trends in symptom severity.

We begin by postulating that the immune system goes on the attack for a
fixed period of δ years, after which it returns to normal function due to treatment
or normal recovery. For purposes of this illustration, we take δ = 0.02 years,
or about two weeks. We represent the time course of attacks as a box function
u(t) that is 0 during normal functioning and 1 during a flare.

We begin with the following simple linear differential equation for symptom
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Figure 10: Symptom level s(t) for a patient suffering from lupus as assessed by
the SLEDAI scale. Changes in SLEDAI score corresponding to a flare are shown
as heavy solid lines, and other the remaining changes are shown as dashed lines.
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severity s(t) at time t:

Ds(t) = −β(t)s(t) + α(t)u(t). (21)

This equation has the solution

s(t) = Cs0(t) + s0(t)
∫ t

0

α(z)u(z)/s0(z) dz

where

s0(t) = exp[−
∫ t

0

β(z) dz].

Function α(t) tracks the long-term trend in the severity of the disease over the
19 years, and we will represent this as a linear combination of 8 cubic B-spline
basis functions defined by equally spaced knots and with about three years
between knots. We expect that a flare plays itself out over a much shorter time
interval, so that α(t) cannot capture any aspect of flare dynamics.

The flare dynamics depend directly on weight function β(t). At the point
where an attack begins, a flare increases in intensity with a slope that is pro-
portional to β, and rises to a new level in roughly 4/β(t) time units if β(t) is
approximately constant. Likewise, when an attack ceases, s(t) decays exponen-
tially to zero with rate β(t).

It seems reasonable to propose that β(t) is affected by an attack as well as
s(t). This is because β(t) reflects to some extent the health of the individual
in the sense that responding to an attack in various ways requires the body’s
resources, and these are normally at their optimum level just before an attack.
The response drains these resources, and thus the attack indirectly is likely to
reduce β(t). Consequently, we propose a second simple linear equation to model
this mechanism:

Dβ(t) = −γβ(t) + θ[1− u(t)]. (22)

This model suggests that an attack results in an exponential decay in β with
rate γ, and that the cessation of the attack results in β(t) returning to its normal
level in about 4/γ time units. This normal level is defined by the gain K = θ/γ.
However, if γ is large, the model behaves like

Dβ(t) = θ[1− u(t)], (23)

which is to say that β(t) increases and decreases linearly.
The top panel in Figure 11 shows how β(t) responds to an attack indicated

by the box function u(t) when γ = θ = 4, corresponding to a time to reach a new
level of about 1 time unit. The initial value β(0) = 0 in this plot. The bottom
panel shows that the increase in symptoms is nearly linear during the period of
attack, but that when the attack ceases, symptom level declines exponentially
and takes around 3 time units to return to zero.

When we estimated this model with smoothing parameter value λ = 1, we
obtained the results shown in Figure 12. We found that parameter γ was indeed
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Figure 11: The top panel shows the effect of a lupus attack on the weight
function β(t) in differential equation (21). The bottom panel shows the time
course of the symptom severity function s(t). These results are for parameters
γ = θ = 4.
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Figure 12: The circles indicate SLEDAI scores, the jagged solid line is the
smoothing functions s(t), the dashed jagged line is the solution to the differential
equation and the smooth dashed line is the smooth trend α(t).

so high that the fitted symptom rise was effectively linear, so we deleted γ and
use the simpler equation (23). This left only the constant θ to estimate for β(t),
which now controls the rate of decrease of symptoms after an attack ceases. This
was estimated to be 1.54, corresponding to a recovery period of about 4/1.54 =
2.6 years. Figure 12 shows the variation in α(t) as a dashed line, indicating the
long-term change in the intensity of the symptoms, which are especially severe
around year 6, 11, and in the patient’s last three years.

Our model provides two estimates of the symptom levels. The fitted function
s(t) is shown as a solid line. It was defined by positioning three knots at each
of the flare onset and offset times in order to accommodate the sudden break in
the first derivative of s(t), and a single knot midway between two flare times.
Order 4 B-splines were used, and this corresponded to 290 knot values and 292
basis functions in the expansion s(t) = c′φ(t). We see that the fitted function
seems to do a reasonable job of tracking the SLEDAI scores, both in the period
during and following an attack and also in terms of its long-term trend.

The model also defines the differential equation (21), and the solution to this
equation is shown as a dashed line. The discrepancy between the fit defined by
the equation and the smoothing function s(t) is important in years 8 to 11,
where the equation solution over-estimates symptom level. In this region, new
flares come too fast for recovery, and thus build on each other. A more detailed
view over the years 14 to the end of the record is in Figure 13, and we see there
that the DIFE solution is less able than the smooth to track the data when
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Figure 13: The data in Figure 12 plotted over the last five years of the record.

flares come close together.
Nevertheless, the fit to the 208 SLEDAI scores achieved by an investment

of 9 structural parameters seems impressive for both the smoothing function
s(t) and equation solution, taking into consideration that the SLEDAI score is
a rather imprecise measure. Moreover, the model goes a long way to modelling
the within-flare dynamics, the general trend in the data, and the interaction
between flare dynamics and trend.

7 Generalizations

The methodology presented here has been described for systems of ordinary dif-
ferential equations. However, the idea is much more general. In any parametric
situation, if we can define a PEN(x|θ) whose zero set is indexed by nuisance
parameters and the estimation of θ is of interest, then similar methods may be
applied. The generalization of Theorems 4.4 and 4.5 are immediate.

In dynamical systems, we have already noted that an mth order system:

Dmx(t) = f(x, Dx, . . . , Dm−1x,u, t|θ) (24)

may be reduced to a larger first-order system by defining the derivatives Dx up
to Dm−1x as new variables. Initial conditions need to be given for each of these
new variables in order to define a unique solution. Equation (24), however, can
be used directly to define a differential operator as in (7), saving the estimation
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of the derivative terms and all the initial conditions. There is, of course, no
need for m in (24) to be constant across components of x.

A slight generalization of (24) is to allow m to be zero for some components,
that is define

xi(t) = fi(x,u, t|θ) (25)

some some components i. Such a system is labelled a Differential-Algebraic
System and these have been used in chemical engineering (Biegler et al. (1986)).
In general, a numerical solution of such equations requires (25) to be solved
numerically given the other values of x. Our approach also allows (25) to appear
as a term in PEN(x|θ), providing an easier implementation of such systems.

A further generalization allows f to include lags. That is

Dx(t) = f(x(t− δ1),x(t− δ2), . . . ,x(t− δ3),u(t− δ4), t|θ) (26)

in which case x(t) needs to be specified for all values in [t0−max δi, t0] as initial
conditions. Again, in its generality, our methodology can include such systems
without knowing initial conditions. We can also, in theory, estimate the δi,
although we have yet to experiment with this possibility.

Finally, although we have only considered ordinary differential equations in
this paper, the methodology extends naturally to partial differential equations
in which a system x(s, t) is described over spatial variables s as well as time
t. In this case, the system may be described in terms of both time and space
derivatives:

∂x
∂t

= f
(
x,

∂x
∂s

,u, t|θ
)

.

The smooth x(s, t) now requires a multi-dimensional basis expansion, but
the same estimation and variance estimation schemes already discussed can be
carried out in a straightforward manner.

8 Further issues in fitting differential equations

8.1 Assessing goodness of fit and model building

From our experiences with real-world data, differential equation models are often
not well specified. This is particularly true in biological sciences where the first
principles from which they are commonly deduced tend to be less exact than
those derived from physics and chemistry. These models are commonly selected
only to provide the right qualitative behavior and may take values orders of
magnitude different from the observed data.

There is therefore a great need for diagnostic tools for such systems. Both
to determine the appropriateness of the model and, where it is inappropriate, to
suggest ways in which it may be modified. One approach to this is to estimate
additional components of u that will provide good fits. These may then be
correlated with observed values of the system, or external factors, to suggest
new model formulae.
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8.2 Experimental design

A typical industrial process involves many outputs and many inputs, with at
least some of each varying over time. Engineers plan experiments in which
inputs are varied under various regimes, including randomly or systematically
timed changes; and step, ramp, curvilinear and harmonic perturbations. Of-
ten the effects of input perturbations are localized and also interactive. These
considerations point to a wide spectrum of experimental design problems that
statisticians need to address with the help of the system estimation technology
proposed here.

We can add to these design issues the choice of sampling rate and accuracy
for measurements taken on both input and output variables. For example, in
stable systems minor changes in initial values of variables wash out quickly,
but for systems that are close to instability, estimating the initial state of the
system requires considerable high quality data at start-up. Certain parameters
may also affect system behavior only locally, and therefore also require more
information where it counts.

9 Conclusions

Differential equations have a long and illustrious history in mathematical mod-
elling. However, there has been little development of statistical theory for esti-
mating such models or assessing their agreement with observational data. We
have proposed a novel method for estimating parameters from data derived from
systems governed by differential equations. Our approach combines the concepts
of smoothing and estimation, providing a continuum of trade-offs between fitting
the data well and fidelity to the hypothesized differential equations. This has
been done by defining a fit through a penalize spline criterion for each value of
θ and then estimating θ through a profiling scheme in which the fit is regarded
as a nuisance parameter. We have found this scheme to have good numerical
properties. We have also produced variance estimates that we show to have
good coverage properties.

The methodology that we have presented can be adapted to a large number
of problems that extend beyond ordinary differential equations; an area that
we have yet to explore. The theoretical properties of our proposed estimates
are not well understood for λ not close to ∞. In particular, the extent to
which using a smaller amount of smoothing provides robustness against mild
mis-specification of the equations is not clear. We have mentioned experimental
design and goodness of fit among the many standard statistical problems that
have yet to be addressed, making the statistics of dynamical systems a source
of important and challenging problems.
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Appendices

A Matrix calculations for profiling

The calculations used throughout this paper have been based on matrices de-
fined in terms of derivatives of F and H with respect to θ and c. In many cases,
these matrices are non-trivial to calculate and expressions for their entries are
derived here. For these calculations, we have assumed that the outer criterion,
F is a straight-forward weighted sum of squared errors and only depends on θ
through x.

A.1 Inner optimization

Using a Gauss-Newton method, we require the derivative of the fit at each
observation point:

dxi(ti,k)
dci

= Φi(ti,k)

where Φi(ti,k) is the vector corresponding to the evaluation of all the basis
functions used to represent xi evaluated at ti,k. This gradient of xi with respect
to cj is zero.

A numerical quadrature rule allows the set of errors to be augmented with
the evaluation of the penalty at the quadrature points and weighted by the
quadrature rule:

(λiwivq)1/2 (Dxi(tq)− fi(x(tq),u(tq), tq|θ))

Each of these then has derivative with respect to cj :

(λiwivq)1/2 (Dxi(tq)− fi(x(tq),u(tq), tq|θ)) I(i = j)DΦi(tq)

−
(

n∑

k=1

(λiwivq)1/2 dfk

dxj
(Dxi(tq)− fi(x(tq),u(tq), tq|θ))

)
Φj(tq)

and the augmented errors and gradients can be used in a Gauss-Newton scheme.
I() is used as the indicator function of its argument.

A.2 Outer optimization

As in the inner optimization, in employing a Gauss-Newton scheme, we merely
need to write a gradient for the point-wise fit with respect to the parameters:

dx(ti,k)
dθ

=
dx(ti,k)

dc
dc
dθ

where dx(ti)/dc has already be calculated and

dc
dθ

= −
[
d2H

dc2

]−1
d2H

dcdθ
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by the Implicit Function Theorem.
Hessian matrix d2H/dc2 may be expressed as a block form, the (i, j)th block

corresponding to the cross-derivatives of the coefficients in the ith and jth com-
ponents of x. This block’s (p, q)th entry is given by:

(
ni∑

k=1

wiφi,p(ti,k)φj,q(ti,k) + λ

∫
φi,p(t)φj,q(t)dt

)
I(i = j)

− λi

∫
Dφi,p(t)

dfi

dxj
φj,q(t)dt− λj

∫
φi,p(t)

dfi

dxj
Dφj,q(t)dt

+
∫

φi,p(t)

[
n∑

k=1

λk

(
d2fk

dxidxj
(fk −Dxk(t)) +

dfk

dxi

dfk

dxj

)]
φj,q(t)dt

with the integrals evaluated by numeric integration. The arguments to fk(x,u, t|θ)
have been dropped in the interests of notational legibility.

We can similarly express the cross-derivatives d2H/dcdθ as a block vector,
the ith block corresponding to the coefficients in the basis expansion for the ith
component of x. The pth entry of this block can now be expressed as:

λi

∫
dfi

dθ
φi,p(t)dt−

∫ (
n∑

k=1

λk

[
d2fk

dxidθ
(fk −Dxk(t)) +

dfk

dxi

dfk

dθ

])
φi,p(t)dt

A.3 Estimating the variance of θ̂

The variance of the parameter estimates is calculated using

dθ

dY
= −

[
d2F

dθ2

]−1
d2F

dθdY
.

Neither of the terms on the right hand side are trivial. The first may be expanded
by differentiating:

d

dθ

dF

dθ
= − d

dθ

{[
d2H

dc2

]−1
d2H

dcdθ

}
.

Using the matrix identity

d

dt

(
A(t)−1

)
= − [A(t)]−1 dA(t)

dt
[A(t)]−1

this expression expands (and simplifies) to:

− dF

dc

T [
d2H

dc2

]−1
{

N∑
p=1

(
d3H

dcdθidθj

d3H

dcdcpdθi

dcp

dθj
+

d3H

dcdcpdθj

dcp

dθi

)
+

}

− dF

dc

T [
d2H

dc2

]−1
{

N∑
p,q=1

dcp

dθi

d3H

dcdcpdcq

dcq

dθj

}
+

dc
dθi

T d2F

dc2

dc
dθj
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for the (i, j)th entry where the summations for p and q cover the coefficients
from all components of x. Here d2F/dc2 is a block-diagonal matrix with the
ith block being wiΦi(ti)T Φi(ti) and dF/dc is a block vector containing blocs
−wiΦi(ti)T (yi − xi(ti)).

Three-way array d3H/dcdcpdcq can be written in the same block vector form
as d2H/dcdθ with the uth entry of the kth block given by
∫ (

n∑

l=1

λl

[
d2fl

dxidxj

dfl

dxk
+

d2fl

dxidxk

dfl

dxj
+

d2fl

dxjdxk

dfl

dxi

])
φi,p(t)φj,q(t)φk,u(t)dt

+
∫ n∑

l=1

λl

(
d3fk

dxidxjdxk
(fl −Dxl(t))

)
φi,p(t)φj,q(t)φk,u(t)dt

− λi

∫
d2fi

dxjdxk
Dφi,p(t)φj,q(t)φk,u(t)dt− λj

∫
d2fj

dxidxk
φi,p(t)Dφj,q(t)φk,u(t)dt

− λk

∫
d2fk

dxidxj
φi,p(t)φj,q(t)Dφk,u(t)dt

assuming cp is a coefficient in the basis representation of xi and cq a corresponds
to xj . Three-way array d3H/dcdθidθj is also expressed in the same block form
with entry p in the kth block being:

∫ (
n∑

l=1

λl

[
d2fl

dθidθj

dfl

dxk
+

d2fl

dθidxk

dfl

dθj
+

d2fl

dθjdxk

dfl

dθi

])
φk,p(t)dt

+
∫ n∑

l=1

λl

(
d3fk

dxkdθidθj
(fl −Dxl(t))

)
φk,p(t)dt− λk

∫
d2fk

dθidθk
φk,p(t)dt.

Three-way array d3H/dcdcpdθi is in the same block from, with the qth entry of
the jth block being:

∫ (
n∑

l=1

λl

[
d2fl

dθidxj

dfl

dxk
+

d2fl

dθidxk

dfl

dxj
+

d2fl

dxjdxk

dfl

dθi

])
φk,p(t)φj,q(t)dt

+
∫ n∑

l=1

λl

(
d3fk

dxjdxkdθi
(fl −Dxl(t))

)
φk,p(t)φj,q(t)dt

− λj

∫
d2fj

dθidxk
Dφj,q(t)φk,p(t)dt− λk

∫
d2fk

dθidxj
φj,q(t)Dφk,p(t)dt

where cp corresponds to the basis representation of xk.
Similar calculations give matrix d2F/dθdY explicitly as:

dc
dθ

T [
d2F

dcdY
+

d2F

dc2

dc
dY

]

− dF

dc

[
d2F

dc2

]−1
{

N∑
p,q=1

dcp

dθ

T d3H

dcdcpdcq

dcq

dY
+

N∑
p=1

d3H

dcdcpdθ

dcp

dY

}
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with dc/dY given by

−
[
d2H

dc2

]−1
d2H

dcdY

and d2H/dcdY being block diagonal with the ith block containing wiΦi(ti).

B Proofs of theorems in section 4.1

The central theorem of Section 4.1 concerns the behavior of a function x(α)
defined by x(α) = minx g(x, α). We begin with two lemmas:

Lemma B.1. Let X be a closed and bounded metric space. Suppose that

x∗ = argmin
x∈X

g(x) (27)

is well defined and g(x) is continuous. Then

∀ε > 0, ∃δ > 0 such that ‖x− x∗‖ > ε ⇒ f(x)− f(x∗) > δ.

holds for all x ∈ X .

Proof. Assume that the the statement is not true. That is, for some ε > 0 we
can find a sequence xn ∈ X such that ‖xn−x∗‖ > ε but ‖g(xn)−g(x∗)‖ < 1/n.
Since X is closed and bounded, it is compact and there exists a subsequence
xn′ → x∗∗ 6= x∗ for some x∗∗. By the continuity of g, we have g(x∗∗) = g(x∗)
violating the assumption that (27) is well defined.

Lemma B.2. Let X and Y be metric spaces and g(x, α) : X×Y → R be bounded
below and uniformly continuous in α and x, then j(α) = minx∈X g(x, α) is a
continuous function.

Proof. Assume j(α) is not continuous: that is, for some α ∈ Y, ∃ε > 0 such
that ∀δ > 0, ∃α′ with |α′ − α| < δ and |j(α)− j(α′)| > ε.

By the uniformity of g in α across x, we can choose δ′ > 0 so that |g(x, α)−
g(x, α′)| < ε/3 for all x when |α − α′| < δ′. By assumption, we can find some
such α′ so that |j(α)− j(α′)| > ε. Without loss of generality, let j(α) < j(α′).

Now, choose x ∈ X so that g(x, α) < j(α) + ε/3. Then g(x, α′) < j(α) +
2ε/3 < j(α′), contradicting j(α′) = minx∈X g(x, α).

Theorem 4.3: Let X and Y be metric spaces with X closed and bounded. Let
g(x, α) : X × Y → R be uniformly continuous in x and α, such that

x(α) = argmin
x∈X

g(x, α)

is well defined for each α. Then x(α) : Y → X is continuous.
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Proof. Let ε > 0, by Lemma B.1 there exists δ′ > 0 such that

g(x, α)− g(x(α), α) < δ′ ⇒ ‖x− x(α)‖ < ε.

By Lemma B.2, j(α) is continuous. Since g(x, α) is uniformly continuous , we
can choose δ so that

|α− α′| < δ → |j(α)− j(α′)| < δ′/3 and ∀x, |g(x, α)− g(x, α′)| < δ′/3

giving

|g(x(α), α)− g(x(α′), α)| < |g(x(α), α)− g(x(α′), α′)|+ |g(x(α′), α′)− g(x(α′), α)|
= |j(α)− j(α′)|+ |g(x(α′), α′)− g(x(α′), α)|
< δ/3 + δ/3
< δ

from which we conclude ‖x(α)− x(α′)‖ < ε.
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