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Abstract. The conservation laws for linear and angular momenta in affahger—Chern—Simons

field theory modelling vortex dynamics in planar superconductors are studied. In analogy with fluid
vortices it is possible to express the linear and angular momenta as low moments of vorticity. The
conservation laws are shown to be consistent with those obtained in the moduli space approximation
for vortex dynamics, valid close to the Bogomol'nyi limit. For Bogomol'nyi vortices, the relevant
moments of vorticity can be evaluated fairly explicitly, as can the integral gfifgwheregp is the

scalar field. Conservation of angular momentum prevents a single vortex from escaping to infinity.

PACS numbers: 1127, 1130, 7420D

1. Introduction

Recently, a (2+1)-dimensional field theory of a complex scalar field, Wwith) gauge
invariance, was proposed to describe the non-dissipative dynamics of magnetic flux vortices
in thin-film superconductors [9]. The Lagrangian is of first-order 8dmger—Chern—Simons
type, containing terms linear in the first time derivatives of the fields, but no quadratic terms.
Interestingly, in this theory two vortices orbit around each other. It has been argued that such
motion occurs in superconductors at very low temperature [1, 14].

For time-independent fields, the Lagrangian reduces to the standard Ginzburg—Landau

energy functional, so for certain values of the coupling constants, there are static multi-vortex
solutions obeying Bogomol’'nyi equations [4]. Such solutions describe vortices all with the
same sign of their quantized magnetic flux. The spa@de-gbrtex solutions, whose parameters
are just the vortex positions, is known as tkievortex moduli space, and is\2dimensional.
To understand the vortex motion when the coupling constants have slightly different values,
we use the moduli space approach to soliton dynamics, originally applied to Yang—Mills—
Higgs monopoles [8]. Here, the vortex dynamics is approximated by a reduced, finite-
dimensional dynamical system, obtained by projecting the field dynamics onto the moduli
space of Bogomol'nyi vortices. The dynamical variables of the reduced system are just the
time-varying vortex positions.

The main conclusion in [9] was the Lagrangian of the reduced system (equation (2.15)
below). From this it is straightforward to obtain conserved quantities of the reduced dynamics,
which can be interpreted as the linear and angular momenta. The linear momentum turns
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out to be related to the mean of the vortex positions, which is not so surprising in a first-
order dynamical system, and its conservation implies that the vortices circulate around the
mean position. The angular momentum is related to the sum of the squared distances of the
individual vortices from the mean position, and we shall show that its conservation implies
that no vortex can escape to infinity.

The conserved linear and angular momenta of the reduced dynamics were not directly
related to the linear and angular momenta of the parent field theory in [9]. This omission
is rectified here. The conserved quantities of the field theory have to be derived with care,
in order to be gauge invariant. The naive canonical linear and angular momenta are not
gauge invariant; moreover, they are not even conserved if the field configuration has non-
trivial topology, because of currents at infinity. The relevant conserved quantities have been
obtained by Has$ae et al [5] by identifying the field theory with the Jackiw—Pi model [7]
in a background field. Here, we obtain the conservation laws more directly using Noether’s
theorem, and we clarify the issues of gauge invariance and currents at infinity. Following
Papanicolaou and Tomaras [10], who studied conservation laws in a similar model, we also
express the linear and angular momenta as moments of vorticity. This establishes an analogy
between our model of magnetic flux vortices and models of fluid vortices [3]. By evaluating
these moments of vorticity for fields satisfying the Bogomol'nyi equations, we rederive the
linear and angular momenta of the reduced vortex dynamics.

Evaluating the moments of vorticity is mostly a straightforward application of Green'’s
lemma; however, we encounter one noteworthy result. We obtain an expression for the integral
over the plane of log|?, where¢ is the scalar field. This integral converges, despite the
logarithmic singularities of the integrand at the vortex locations.

The moduli space approximation has been established rigorously by Stuart [17] in the
context of slowly moving Bogomol'nyi vortices in the relativistic Abelian Higgs model.
However, in the Sclidinger—Chern—Simons theory of vortices it is plausible, but not
yet certain, that the moduli space approximation faithfully describes the vortex dynamics.
Obtaining consistent conservation laws provides an important check.

The outline of this paper is as follows. In section 2, we review the field theory, and the
reduced Lagrangian of vortex dynamics obtained using the moduli space approximation. In
section 3, we obtain the conserved linear and angular momenta in the field theory and express
them in terms of vorticity. In section 4, we evaluate these expressions for Bogomol'nyi fields,
and compare with the conserved quantities obtained from the reduced Lagrangian. In section 5
we discuss the limit where vortices coalesce into one or more clusters. Section 6 contains our
conclusions.

2. The field theory

2.1. The Schirdinger—Chern—Simons Lagrangian

Let ¢ be a complex (Higgs) scalar field representing the condensate of the superconducting
electrons and let, (¢« = 0, 1, 2) be theU (1) gauge potential. We will use the subscript 0

to refer to time and the subscripts 1 and 2 to refer to the two directions in space. Sometimes,
bold symbols will be used to denote (spatial) two-vectors. The Lagrangian of the model is [9]

L=T-V (2.1)

where the kinetic energy is

YEi/Gé@Dw—¢E@+uw@+&m—Emg—y%>&x (2.2)
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and the potential energy
1o, 1— & 22, 1) @
V= [ (5B +5DidDig+ (1= 1012 +ai ] | . (2.3)

Here,y, u anda are real constants with positive, D,¢ = (3, — ia,)¢ are the components
of the covariant derivative af, B = d,a, — doa; is the magnetic fieldE; = 9;ag — dpa; the
electric field, and/” is a constant transport current. We assume the summation convention in
the spatial index = 1, 2. The Schadinger term (with coefficient) and the Chern—Simons
term (with coefficientu) define the kinetic energy for the scalar field and gauge potential.
The termyayg, introduced by Barashenkov and Harin [2], allows the possibility of a non-
zero condensate in the ground state. The potential energy is the Ginzburg—Landau energy
functional. Notice that the kinetic energy contains terms with only the first power of time
derivatives. It was shown in [9] that is Galilean invariant. This implies that given any
solution of the field equations in the absence of a transport current, the eftéttietimply
to boost the solution with a velocity = %JiT. Having understood this role of the transport
current, we will henceforth suppose it vanishes.

The field equations obtained by varyiga; andag, respectively, are

. 1 A

lyDo¢=—§D,-D,-¢—Z(1—|¢|2)¢ (2.4)
EijajB = J,’ + ZMEUE]' (25)
2uB =y (1-19I%) (2.6)

whereJ; is the supercurrent defined by

Ji = —12 (Dip — 6 Did ). @2.7)

Equation (2.4) is the gauged nonlinear Sulinger equation, equation (2.5) is the two-
dimensional version of Angre’s law and equation (2.6) is a constraint. Such a constraint
appears in other Chern—Simons theories [6, 7]. It is useful to note that this constraint is one
of the Bogomol'nyi equations for vortices when= . [4]. We shall assume that-1 |¢|?
and D; ¢ decay rapidly asx| — oo. Equations (2.4)—(2.7) imply thddy¢, B and E; decay
similarly.

2.2. Vortices

The above field theory admits vortex solutions. Vortices appear whenever there is a non-trivial
winding of the map between the boundary circle at spatial infinity and the manifold of ground
states of the scalar field, the cirdglg| = 1. The relation between the winding numbérand

the magnetic flux is

/B d?x = 27 N. (2.8)

N can be interpreted as the vortex number. Henceforth, we suppas®. Later, we define
a gauge invariant vorticity’, whose integral is 2N. However, the vorticity is not simply
V =B.

Generally, a solution withv vortices is not static, and we wish to understand how the
vortices move. However, it is by now well known that for special values of the couplings a
large space of stable, statd-vortex solutions exists, for any > 0 [18]. These solutions
satisfy first order Bogomol'nyi equations, as well as the second order Ginzburg—Landau field
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equations [4]. For the theory here, Bogomol'nyi vortices occur whenl andy = u. The
first order Bogomol'nyi equations are

(D1 +iD2)¢p =0 (2.9)
B=3(1-9%. (2.10)

Solutions of these equations also satisfy (2.4)—(2.7), Wigh andE; vanishing. Bogomol'nyi
vortices do not exert forces on each other, the repulsion of the magnetic fluxes being cancelled
by the scalar attraction, and this is why a static configuratioV afortices can exist. The
solutions of the Bogomol'nyi equations with winding numiéare uniquely specified by the
unordered zeros of the scalar field, whose number, counted with multiplicly, These zeros
are the vortex positions and we denote thiarh: 1 < s < N}. The space of solutions, called
the N-vortex moduli space, is therefore topologically’ / =y, whereXy is the permutation
group onN objects and the two-dimensional real plane is identified with the complex plane
C. The N-vortex moduli space is a smooth manifold of dimensidh 2espite the apparent
singularities where vortex positions coalesce.

Hass#ne et al have recently discovered stationary Bogomol’'nyi-type vortex solutions in
this theory withy # w« [5]. The fields satisfy (2.9) and (2.6), and in additigyis proportional
to B. One needs = 2y /u — y?/u?, andi must be positive. These vortices are sources for
non-vanishing electric fields. However, we shall not consider these solutions here.

2.3. The reduced Lagrangian for vortex dynamics

We consider the case whekds close to one angt = u. We are interested in fields which
remain close tav-vortex solutions of the Bogomol'nyi equations, but in which the vortex
positions move slowly. In the moduli space approximation to vortex dynamics, one obtains a
reduced Lagrangian by simply inserting Bogomol'nyi solutions into (2.1) and taking the vortex
positions dependent on time. Let us widt@s

¢ = i, (2.11)
h is gauge invariant, and tends to zero at spatial infinity, but is singular at the vortex positions.
The first Bogomol'nyi equation (2.9) implies that

a; = %ei‘ifijh +0;x. (212)

From the second Bogomol'nyi equation (2.10), one obtains
N
didh — €' +1=47) " §*(x — a'). (2.13)
s=1

This is the fundamental gauge invariant equation describing Bogomol’nyi vortices. We assume
this equation holds, even if the vortex positiqas} are slowly moving.

Let us now suppose that the vortex positions are distinct, which is the generic case. We
shall consider vortex coalescence in section/6= log|¢|?> has the following expansion
around the position of theh vortex:

h=loglz —z'|?+a’ +b" - (x — ') +--- (2.14)

where{a®, b’} are dependent on the positions of the other vortices relative tbhe usefulness

of this expansion was discovered by Samols [12], developing work of Stracharufl#hys

no significant role in what follows, bt does.b* is a measure of the lack of circular symmetry

of h around the vortex, and is exponentially small if the other vortices are distant. After various
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integrations, and suppression of total time derivative terms, one obtains the manifestly gauge
invariant reduced Lagrangian [9]

N
L™ = 2wy Y " ((by+ 3x3)x — (b} + 3x})i3) — V'™ (2.15)
s=1
where an overdot denotes time-derivative. This leads directly to equations of motion for the
vortex positions. The potential (2.3) simplifies for solutions of the Bogomol'nyi equations to
the integral

yred — ;/ (1- |¢>|2)2 d?x (2.16)
plus a constant N, and this is a translationally and rotationally invariant function of the vortex
positions. Unfortunately, it appears thiate® cannot be simplified to an explicit expression
depending only ofz’, a°, b*}. The functions* andV " are not known explicitly as functions
of the relative positions aV-vortices, but they can be calculated numerically and this has been
performed for two-vortices in [12, 13].

3. Conservation laws in the field theory

The linear and angular momenta for the field theory we are considering here were obtained
in [5]. Here, we give an independent derivation from first principles. [t} =

{¢, @, ao, a1, az}, wherec runs from 1-5. If under a variation of the fielig., the variation of

the Lagrangian density, is 6£ = a,j(“, then Noether’s theorem associates a conserved
current with such a variation. (Here and below, we suppress the infinitesimal quantity
multiplying such variations.) The Noether current, assuming the summation convention over
the indexc, is

- oL
=
ICA)
By Noether’s theorenauf“ = 0, and it follows that the integral of the time componghis

a conserved quantity provided that the spatial components of the cyifremid ;2 fall off
sufficiently fast at spatial infinity.

SYe — XM (3.1)

3.1. Energy

The simplest conserved quantity to consider is energy. This is related to invariance under time
translation. Naively, the variations of the fields are given by their time derivatives. However,
one can supplement this by a gauge transformation with the paramefeihe variations of

the fields are then

{8V} = {Do¢, Do, 0, —E1, —Ep} (3.2)
and the change id is§£ = 9, X", where
X% =L +yag — paoB, X! = —pagkE,, X? = pagE. (3.3)

Using (3.1), the energy density is

1 1— A 2
= ZB2+ZD.¢D:d+ = (1= 107 .
J 23 2D1¢D1¢ 8 (1-191%) (3.4)
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79 is gauge invariant. Moreover, its integral is conserved, because the spatial components of
the currents

j*=—1D1¢Do¢p — 1D1¢ Do + BE> (3.5

j?=—1DypDo¢p — 1 D¢ Dop — BE; (3.6)

are gauge invariant, and hence decay rapidly at spatial infinity. Thus, the conserved energy is
V, as given in (2.3) (recall that the transport current vanishes).

3.2. Momentum

Let us now find the linear momentum, associated with translation in thedirection. First,
consider translation in the;-direction. The naive variations of the fields are given by the
spatial derivatives in the;-direction. One supplements this by a gauge transformation with
the parameter-a;. The variations of the fields are then

{8¥} = {D1¢, D19, E1, 0, B} (3.7)
and the change id is§£ = 9, X", where

X = —paiB + yas, Xt =L — parEo, X"? = payE1. (3.8)
The density of the linear momentum in thedirection, calculated using (3.1), is

j®=-y(h+a). (3.9)
Notice that;” is not gauge invariant. Moreover, the spatial components of the currents are
jt == (¢Dot — $Dop) - %BZ - %|Dl¢|2 + %|D2¢|2 + % (1-19P?) +yay (3.10)
and

J% = —3(Da¢ D1¢ + D2 D1h). (3.12)

j'*is not gauge invariant, and hence does not fall off sufficiently fast at infinity for the integral
of j° to be conserved. The remedy for both problems is to noteXtais not uniquely
defined, but can be altered by adding total derivative terms. One chooses an imgtéyed
with 9, X" = 8#5(“‘, in such a way that the resulting current is gauge invariaftt. can be
taken as

X" = X+ yd1(xaaz) — yd2(x2a1) (3.12)
X = X"+ ydx(x2a0) — v do(x2a2) (3.13)
X% = X+ ydo(x2a1) — y d1.(x2a0). (3.14)
Using X'*, the improved density of the linear momentum in thedirection is
J°=—y(1+x:B) (3.15)

and the spatial components of the current are

- - S 1 1 1 A

Jt= —ylz (#Dop — Do) — 5 B% = ZIDagl* + 2 |Dagl* + 5 (L= 167)° = vk
(3.16)

J? = —3(D2¢D1¢p + D2 D1gp) + yx2E1. (3.17)

Clearly, j* and j2 are now gauge invariant and fall off sufficiently fast at spatial infinity.
Similarly, one can consider translations in thedirection. From (3.15) and its analogue for
xo-translations, one concludes that the conserved linear momentum is

I)i =y /(Jl +€ij-ij) dzx. (318)
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(The choice of sign, here and in (3.26) below, is deliberate, and ensures agreement between
the conservation laws in the field theory and those in the reduced theory. It is made because
the field variations are due to passive coordinate variations, whereas later we actively vary the
vortex positions in the reduced theory.)

3.3. Angular momentum

Next, let us obtain the conservation law for angular momentifn,by considering the
generator of rotations;;x; 9;, combined with a gauge transformation with parametgyx;a; .

Here, care is needed to evaluate the Lie derivatives correctly on the scalar field and gauge
potential. The variations of the fields are

{81//1} = {GiniDj(Z), eijx,-Dj¢, eijxiEj, —)C]_B, —XZB}. (319)
The change irC is §£ = 3, X"*, where

X" = —€jxia;(uB — ),

X" = —xof — ueijxia;Ea, (3.20)

X" =1L+ peijxia; Eq.

The angular momentum density obtained using (3.1) is
i = —yexi(Jj +a)). (3.21)

Neither this density nor the spatial components of the current are gauge invariant, nor do they
fall off sufficiently fast at spatial infinity. Again, the remedy is to find an improw€d, with
9, X" = 9,X"*. One may take

X0 = X" — ydn(az?/2) +yda(arr®/2) (322)
X = xn )/32(6101"2/2) + )/30(612}’2/2) (3.23)
X//Z — X" _ )/80(&1"2/2) + )/31(001‘2/2). (324)

Then, the improved angular momentum density is
j//o — _V(Eij-xi-]j — %}"ZB) (325)

which is clearly gauge invariant. Likewisg/! and ;"2 are gauge invariant and do fall off
sufficiently fast. The conserved angular momentum is therefore

M=— / f”o d’x =y /(e,-jxi.]_,- — %rZB) d?x. (3.26)

3.4. Vorticity
Let us now define the vorticity

V=¢€,8J; +B. (3.27)
Substituting forJ;, using (2.7), the vorticity can be written as

V = —ie;;DipDj¢ + B(1— |¢]?), (3.28)

which is the definition in [10], and is a gauge invariant generalization of the notion of vorticity
discussed in [11]. In the sector with vortex numbér

/ Vdix = 27N, (3.29)
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using (3.27) and Stokes’ theorem. Integrating by parts, one may express the linear and angular
momenta as the following moments of the vorticity

P = ye /XJV d’x (3.30)
and
M= —g/VZVde. (3.31)

We noted in the introduction that in a first-order dynamical system the linear momentum can
often be taken as a measure of position. Formula (3.30) exemplifies this idea. The components
of momentum are proportional to the components of the centre of vorticity. Equations (3.30)
and (3.29) imply thaR; = —ﬁelj P; is the centre of vorticity [10], and it does not move.

The conservation of the angular momentum (3.31) shows that no net vorticity can escape
to infinity, assuming that singularities do not form, and therefore a vortex cannot escape to
infinity, unless accompanied by an anti-vortex.

The vorticity has the following interesting property for Bogomol'nyi vortices. Substituting

(2.10) in (2.3), the energy density for Bogomol'nyi vortices is seen to be
B 2, p2
£8%9 = 1|D,;¢|* + B2 (3.32)
On the other hand, using both Bogomol'nyi equations, the vorticity (3.28) can be rewritten as
V = |D;¢|* + 2B (3.33)

Thus, for Bogomol'nyi vortice’ = 2£809,

4. Conservation laws in the reduced dynamics

4.1. The conserved quantities

Conservation laws of the reduced dynamics can be obtained directlyffSpequation (2.15).
(Note that the discussion of conservation laws at the end of [9] is slightly wrong.) In general,
a variationsx! = & is a symmetry i8L™? = 3 X for someX. Noether’s theorem states that

l

N aLred
s=1

is then conserved.
A translation of all the vortex positions in thg-direction is a symmetry. Here, for all

8x] =1, Sx3 =0, 4.2)
andb® andV™are invariant. One findsthat = —xy Zf’zl x3, and the conserved component

of momentum is

N
P =21y Y (by +x3). (4.3)
s=1

Similarly, translation in the,-direction is a symmetry, and

N
Pl = —2my ) (b +x)) (4.4)
s=1
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is conserved. Itwas shown by Samols thelf_, &' = 0. The linear momentum in the reduced
dynamics is therefore simply

N
Pired = 2myei; Zx;, (4.5)
s=1
and directly related to the mean of the vortex positions. Conservation of momentum implies
that the vortices circulate about their fixed mean position.
There is also symmetry under a rotation, where, fos all

8x] = —x3, 8xy = xj. (4.6)
vreds invariant, but the rotation leads to the variations
3b; = —bj, 8by = bj. 4.7)

It follows that L™ s strictly invariant, withX = 0, so one has the following conserved angular
momentum in the reduced dynamics

N
M= 27y Z(%ws cx' +b - 2. (4.8)
s=1
This conservation law implies that no vortex can escape to infinity, as is shown in section 5.

4.2. Comparison with the field theory

Here, we compare the conserved quantities in the field theory with the corresponding conserved
quantities obtained directly from the reduced Lagrangidf?. We assume that the fields
satisfy the Bogomol’'nyi equations at all times, possibly with time-varying vortex positions,
and evaluate the conserved quantities for such fields. This is sensible dlose to 1 and
n=y.

First of all, for fields satisfying the Bogomol'nyi equations, the conserved field energy
is E = wN + V'™ This is consistent with the reduced dynamics, where the Hamiltonian is
simply V' (the constant N is dropped), and’ "% is conserved.

The main task is to evaluate the moments of vorticity (3.30) and (3.31), defining the linear
and angular momentum. Using (2.11) and (2.12), it can be shown that for solutions of the
Bogomol’'nyi equations

J,' = —%Gijajheh, B = —%Biaih. (49)
The vorticity V, defined in (3.27), becomes
V=188 —h) =388 —h-1), (4.10)

where the second expression is more useful, as the quantity in brackets vanishes at infinity.
Another expression fop is

V= 18:(;h(€" — 1)) = 38;(3:h9;d;h), (4.11)

where use has been made of (2.13) and temporarily we ignore the logarithmic singularities of
h. Note thatV is a smooth function despite the singularitieg:of

In what follows we still suppose that has N simple zeros. In order to carry out the
integrals involving moments of let us remove, fronR?, N discs of small radius centred at
the vortex positions, and call the resulting regl8f. AsV is a smooth function, integrations
over the discs will be @2) or smaller, and hence can be neglected in the kmit 0. Thus,
in the following, the effective region of integration B3, and the singularities df may be
ignored in the formulae (4.10) and (4.11) for
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Let C*, wheres runs from 1 toN, denote the boundary of the disc around gtievortex
positionz* and letC® denote the boundary circle at spatial infinity. Further,dfebe the
polar angle relative ta:* with 6° = 0 in the positivex;-direction. Then, the outward unit
normal alongC* isn® = (cos#*, sind*) and the coordinates of points 6i can be written as
x; = xj +en}. The differential line element 06° is d = € d§”.

Now, using (4.10), and remembering the discussion above, the linear momentum (3.30)
can be written with @?2) error as

P = ge,,/ (x; 09 (" —h — 1)) dx. (4.12)
R?

Using Green’s lemma in two dimensions,

N
P = —ge,-j Z/ (x;0 (€ —h—1) — (" — h — Ddgx;) nj dl (4.13)

e,] Z/ (x;9ch(e" — Dnj — (" — h — Dnt) dl. (4.14)

There is no contribution fronC?, the circle at infinity, as’e— 4 — 1 vanishes there. In
calculating the integrals alor@’ we ignore terms which are®) or smaller. OrC*, one finds
from (2.14) that

2 s
ouh = 2k 4 pi 4. (4.15)
€
and é = O(e¢?). Therefore

e,,Z/ ( (x +en)<

Noting that., n' dl = 0 and ., nn; dl = wedx, we conclude that

)nk+(loge +a3+1)n) dl. (4.16)

N
P = 2mye; ij (4.17)

This reproduces the expression (4.5) for the linear momentum, derived in the reduced dynamics.
We turn now to the angular momentuvh. Note that if we used expression (4.10) for the

vorticity V, and applied Green’s lemma to integraf®’, we would require the integral over
the plane ofz. This integral is discussed below, but for the moment we use the alternative
expression (4.11) fov. Then we have the following useful identity

r?V = 1r28;(3:h9;3;h) = 33;q:, (4.18)
where

qi =r28ih8j8jh—2xj8jh8,-h +x,-81-h8jh. (419)
We now use the divergence theorem. A% is a smooth function, we follow the same

procedure as in evaluating, namely, removeéV small discs centred at the positions of the
vortices. With Ge?) error,

Y 2y 42 Y 2
M:—E/rde=—Z/ Bq,dx——Z/vq,n di. (4.20)

Again there is no contribution coming fro@?, the circle at infinity, a$; vanishes there. We
decompose the last sum as

N
y s s s
M= ;:1(11 — 213 + I3), (4.21)
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where
L= [ (r?8;hd;8;h)n dl, (4.22)
cs
o
and
L= / (x;;h9;h)ns dl. (4.24)
CT
Noting from (2.14) that orC*, 9;0;h = —1 + O(e?), we obtain
2
L= | (xxi +2enx}) (— +bfnl‘> (=D dl = —4mx;x; (4.25)
Cs €
where, as usual, terms of(© or smaller have been neglected. Similarly,
2 2
L= /y <ngnj +2 +ij§) (; + bfnf) dl =8 +6rbix;, (4.26)
and
s S .5 4 4 S .8 S 1,5 S .5
I3 = Cx(x,-ni +¢) = + zbjnj +b3b} | dl =8 +4nbix;. (4.27)

Thus, putting all the above integrals together,
N
M= -2y Z(%ws 2t + b2t + 1), (4.28)
s=1

which apart from a constant additive term agrees with (4.8).

The constant term which appears in (4.28) is an important contribution, and is a
consequence of the careful treatment of the field theory. (Its absence in the reduced dynamics
results from discarding various terms that do not affect the equations of motion.) It implies
that a single vortex situated at the origin has total angular momen®iry. Thus, the vortex
has an intrinsic spin.

4.3. The integral oh

Itis rather remarkable that for Bogomol'nyi vortices, whegatisfies (2.13) and the boundary
conditionz — 0 as|xz| — oo, itis possible to evaluate the integral/obver the plane. The
integral is finite, despite the logarithmic singularitiesiofThe result can be derived from the
formula (4.28) forM, by recalculating the integral @V using the expression (4.10) fox.
However, there is a simpler method that we present here.

The result follows from the equation, valid away from the singularitiefs, of

2h = 3 {x;0;hd;h — 1x;0;hd;h +x;(1— & + )} — 2(1 — €. (4.29)
Thisis easily verified, after noting that the first two terms on the right-hand side giykd; 9; 1,
which may be replaced byx;9;4(1 — €"). From (2.13) and (4.9), + €' = 2B, so

f(l —e)d’x =4nN. (4.30)

The integral of the rest of the right-hand side of (4.29) is evaluated with the help of the
divergence theorem. There is no contribution from the circle at infinity. The contributions of
the first two terms from the circleS* have already appeared in (4.23) and (4.24), and their
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values are given by (4.26) and (4.27). There is no contribution from the third term, because its
O(log¢) behaviour orC* is not singular enough. Hence

N
/h d’x = =27 ) (b -2 +3). (4.31)

s=1
In particular, for one vortef i d’x = —6x.

4.4. Contribution of the supercurrent to the momenta

Itis of some interest to separate the contributions of the supercurrent and the magnetic field to
the linear and angular momenta, for fields satisfying the Bogomol'nyi equations. Recall that
the vorticity is

Y =V;+B, (4.32)
where the contribution due to the supercurrent is
V] :e,-jaiJj. (433)

The integral ofy; over the plane is zero, so the total vorticity, or vortex number, is entirely
due to the magnetic field. From (4.10),

V= 29;0;(¢") = 29,0;(3;0;h). (4.34)
It is not difficult to show, using similar methods as previously, thatfer 1, 2

f xVy d?x = 0. (4.35)
The supercurrent therefore makes no contribution to the linear momentum, and

P = ye; /ij d?x. (4.36)

Further, it can be shown that

/ (x0)?V, d’x = —4n N. (4.37)
Hence, the supercurrent contribution to the angular momenuis

M; = —%/rZVJ d’x = 4nyN, (4.38)

just a constant. The contribution dueRds therefore

N
14 2 2 s s s s
MB:_E/r de:_zn—y;(%w ' +b - +3), (439)

and this carries the non-trivial dynamical information.
It is possible to compute the third and the fourth moments,offor fields satisfying the
Bogomol’'nyi equations. One can show, using (4.34) and Green’s lemma, that

/ (03, d2x = —127 ix,i. (4.40)
Similarly, -
f(xk)4vf d’x = 6/(xk)28j8,»h dx = 6/ (9;((x0)?djh) — 20k (xh) + 2h) d’x,  (4.41)
where there is no summation over the indexntegrating again, and using (4.31), one finds

N
/(xk)4VJ d?x = —24r Z ((x,i)2 +b'a’ +3). (4.42)
s=1



Conservation laws in a first-order dynamical system of vortices 863
5. Coincident vortices

The formula (4.28) for the angular momentum\ofortices, in the reduced dynamics, assumes
that no pair of vortices coincide. The same applies to some related formulae, for example the
expression (4.31) for the integral bf

With care, it is possible to take the limit as a cluster of vortices, or possibly atirtices,
become coincident. It is simplest to discuss what happens whe¥ abirtices coincide.
Suppose that the positiofis*} are all close together but still distinct, that isO|z* —x"| « 1
for each pairr # s. In the neighbourhood of these positions, the solution of equation (2.13)
for h is approximately

N
h=Y logle —a'>+a+b-x, (5.1)
s=1
for some constants andb. This is an exact solution if the terms-1€’ in (2.13) are ignored.
The term 1 produces a quadratic correction, ahdsea high-order polynomial producing
smaller corrections. The expansioniofboutz® is

h =|Og|m—m‘Y|2+Zlog|m‘ —az'>+a+b-a’

r#s
2 _ r
+Z (@ —= ) (mz z) +b-(z— ) + Oz — z*|P). (5.2)
r#s - wr'
Therefore
2 —x")
b = - " +p 5.3
; |ms _ wr|2 ( )

with corrections that tend to zero as the vortices coincide. Notebthatsingular due to the
coalescence of the vortices. Now recall the constiaifit, b° = 0. The singular terms cancel
in pairs in this sum, sé must vanish.

We can now calculate the angular momentum using expression (5.8), feith b = 0.
We obtain first

N S r A r
Y=y YISOy A ) v
s=1 CUl |$E —JI|

s=1 r#s 1<r<s<KN
(5.4)

Therefore, as allvV vortices coincide at the origin, the expression (4.28) for the angular
momentum has the finite limit
M = —27yN?, (5.5)

which can be interpreted as the spin of tMecoincident vortices. In other Chern—Simons
theories, it has also been found tiatoincident vortices have spin proportionalXa [6].
In the same coincident limit,

/ hd?x = =27 N(N +2). (5.6)

This result follows from (5.4) and (4.31). Alternatively, it can be obtained directly, by using
the circularly symmetric form of the equation floy multiplying byr2 4% and integrating, and
using the boundary condition that~ 2N logr asr — 0.

One may generalize the preceeding discussion to the situation where one or more smaller
clusters of vortices form. Singular terms develoinif other vortices coalesce with th¢h.
However,> " b* and)_ b° - «* have finite limits.
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The finiteness of the angular momentum as vortices coalesce implies that angular
momentum conservation prevents any vortex escaping to infinity. The first term in the
expression (4.28) foM would diverge if a vortex escaped, but we have now shown that
the second term involvind_ b° - * cannot have a compensating divergence even if a vortex
cluster forms. This result is consistent with the more general argument, given earlier, that no
net vorticity can escape to infinity in the field theory.

6. Conclusions

In this paper, we have succeeded in obtaining, from first principles, the conservation laws
of linear and angular momenta in the Satinger—Chern—Simons theory of vortex dynamics
proposed in [9]. As for fluid vortices, the linear and angular momenta can be expressed as low
moments of a suitably defined vorticity. Our expressions agree with those in [5] in the absence
of any transport current. The conserved quantities in the presence of a transport current are
those that follow using the Galilean invariance of the dynamics.

For a range of values of the couplings, vortex dynamics in the theory reduces,
approximately, to motion in the moduli space of Bogomol'nyi vortices. The expressions for
the linear and angular momenta in the reduced dynamics have been shown to agree with those
obtained by evaluating the linear and angular momenta in the parent field theory, assuming the
fields satisfy the Bogomol'nyi equations. This agreement was not inevitable, and supports the
use of the moduli space approximation. Various integrals involving the vorticity have been
evaluated explicitly to make the comparison possible. A novel expression for the integral of
h = log|¢|? has been found. One consequence of the calculations is that each vortex has a
non-zero net spin. AY vortices coalesce, the total spinV$ times the spin of one vortex. Our
results can probably be extended to a larger range of couplings, by exploiting the electrically
excited vortex solutions of Hasse et al [5].

The conservation of linear momentum implies that the centre of vorticity, which becomes
the mean of the vortex positions in the reduced dynamics, does not move. Conservation of
angular momentum implies that net vorticity cannot escape to infinity; in particular, no vortex
can escape to infinity in the reduced dynamics. Recently, there have been numerical studies
of vortices in the theory considered here [16]. The conservation laws should be a useful guide
to the accuracy of such numerical studies.
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