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Abstract. The conservation laws for linear and angular momenta in a Schrödinger–Chern–Simons
field theory modelling vortex dynamics in planar superconductors are studied. In analogy with fluid
vortices it is possible to express the linear and angular momenta as low moments of vorticity. The
conservation laws are shown to be consistent with those obtained in the moduli space approximation
for vortex dynamics, valid close to the Bogomol’nyi limit. For Bogomol’nyi vortices, the relevant
moments of vorticity can be evaluated fairly explicitly, as can the integral of log|φ|2, whereφ is the
scalar field. Conservation of angular momentum prevents a single vortex from escaping to infinity.

PACS numbers: 1127, 1130, 7420D

1. Introduction

Recently, a (2+1)-dimensional field theory of a complex scalar field, withU(1) gauge
invariance, was proposed to describe the non-dissipative dynamics of magnetic flux vortices
in thin-film superconductors [9]. The Lagrangian is of first-order Schrödinger–Chern–Simons
type, containing terms linear in the first time derivatives of the fields, but no quadratic terms.
Interestingly, in this theory two vortices orbit around each other. It has been argued that such
motion occurs in superconductors at very low temperature [1, 14].

For time-independent fields, the Lagrangian reduces to the standard Ginzburg–Landau
energy functional, so for certain values of the coupling constants, there are static multi-vortex
solutions obeying Bogomol’nyi equations [4]. Such solutions describe vortices all with the
same sign of their quantized magnetic flux. The space ofN -vortex solutions, whose parameters
are just the vortex positions, is known as theN -vortex moduli space, and is 2N -dimensional.
To understand the vortex motion when the coupling constants have slightly different values,
we use the moduli space approach to soliton dynamics, originally applied to Yang–Mills–
Higgs monopoles [8]. Here, the vortex dynamics is approximated by a reduced, finite-
dimensional dynamical system, obtained by projecting the field dynamics onto the moduli
space of Bogomol’nyi vortices. The dynamical variables of the reduced system are just the
time-varying vortex positions.

The main conclusion in [9] was the Lagrangian of the reduced system (equation (2.15)
below). From this it is straightforward to obtain conserved quantities of the reduced dynamics,
which can be interpreted as the linear and angular momenta. The linear momentum turns
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out to be related to the mean of the vortex positions, which is not so surprising in a first-
order dynamical system, and its conservation implies that the vortices circulate around the
mean position. The angular momentum is related to the sum of the squared distances of the
individual vortices from the mean position, and we shall show that its conservation implies
that no vortex can escape to infinity.

The conserved linear and angular momenta of the reduced dynamics were not directly
related to the linear and angular momenta of the parent field theory in [9]. This omission
is rectified here. The conserved quantities of the field theory have to be derived with care,
in order to be gauge invariant. The naive canonical linear and angular momenta are not
gauge invariant; moreover, they are not even conserved if the field configuration has non-
trivial topology, because of currents at infinity. The relevant conserved quantities have been
obtained by Hassaı̈ne et al [5] by identifying the field theory with the Jackiw–Pi model [7]
in a background field. Here, we obtain the conservation laws more directly using Noether’s
theorem, and we clarify the issues of gauge invariance and currents at infinity. Following
Papanicolaou and Tomaras [10], who studied conservation laws in a similar model, we also
express the linear and angular momenta as moments of vorticity. This establishes an analogy
between our model of magnetic flux vortices and models of fluid vortices [3]. By evaluating
these moments of vorticity for fields satisfying the Bogomol’nyi equations, we rederive the
linear and angular momenta of the reduced vortex dynamics.

Evaluating the moments of vorticity is mostly a straightforward application of Green’s
lemma; however, we encounter one noteworthy result. We obtain an expression for the integral
over the plane of log|φ|2, whereφ is the scalar field. This integral converges, despite the
logarithmic singularities of the integrand at the vortex locations.

The moduli space approximation has been established rigorously by Stuart [17] in the
context of slowly moving Bogomol’nyi vortices in the relativistic Abelian Higgs model.
However, in the Schrödinger–Chern–Simons theory of vortices it is plausible, but not
yet certain, that the moduli space approximation faithfully describes the vortex dynamics.
Obtaining consistent conservation laws provides an important check.

The outline of this paper is as follows. In section 2, we review the field theory, and the
reduced Lagrangian of vortex dynamics obtained using the moduli space approximation. In
section 3, we obtain the conserved linear and angular momenta in the field theory and express
them in terms of vorticity. In section 4, we evaluate these expressions for Bogomol’nyi fields,
and compare with the conserved quantities obtained from the reduced Lagrangian. In section 5
we discuss the limit where vortices coalesce into one or more clusters. Section 6 contains our
conclusions.

2. The field theory

2.1. The Schr̈odinger–Chern–Simons Lagrangian

Let φ be a complex (Higgs) scalar field representing the condensate of the superconducting
electrons and letaα (α = 0, 1, 2) be theU(1) gauge potential. We will use the subscript 0
to refer to time and the subscripts 1 and 2 to refer to the two directions in space. Sometimes,
bold symbols will be used to denote (spatial) two-vectors. The Lagrangian of the model is [9]

L = T − V (2.1)

where the kinetic energy is

T =
∫ (

γ
i

2
(φ̄D0φ − φD0φ) +µ(Ba0 +E2a1− E1a2)− γ a0

)
d2x (2.2)



Conservation laws in a first-order dynamical system of vortices 853

and the potential energy

V =
∫ (

1

2
B2 +

1

2
DiφDiφ +

λ

8
(1− |φ|2)2 + aiJ

T
i

)
d2x. (2.3)

Here,γ , µ andλ are real constants withλ positive,Dαφ = (∂α − iaα)φ are the components
of the covariant derivative ofφ, B = ∂1a2 − ∂2a1 is the magnetic field,Ei = ∂ia0 − ∂0ai the
electric field, andJ Ti is a constant transport current. We assume the summation convention in
the spatial indexi = 1, 2. The Schr̈odinger term (with coefficientγ ) and the Chern–Simons
term (with coefficientµ) define the kinetic energy for the scalar field and gauge potential.
The termγ a0, introduced by Barashenkov and Harin [2], allows the possibility of a non-
zero condensate in the ground state. The potential energy is the Ginzburg–Landau energy
functional. Notice that the kinetic energy contains terms with only the first power of time
derivatives. It was shown in [9] thatL is Galilean invariant. This implies that given any
solution of the field equations in the absence of a transport current, the effect ofJ Ti is simply
to boost the solution with a velocityvi = 1

γ
J Ti . Having understood this role of the transport

current, we will henceforth suppose it vanishes.
The field equations obtained by varyingφ̄, ai anda0, respectively, are

iγD0φ = −1

2
DiDiφ − λ

4

(
1− |φ|2)φ (2.4)

εij ∂jB = Ji + 2µεijEj (2.5)

2µB = γ (1− |φ|2) (2.6)

whereJi is the supercurrent defined by

Ji = − i

2

(
φ̄Diφ − φDiφ

)
. (2.7)

Equation (2.4) is the gauged nonlinear Schrödinger equation, equation (2.5) is the two-
dimensional version of Amp̀ere’s law and equation (2.6) is a constraint. Such a constraint
appears in other Chern–Simons theories [6, 7]. It is useful to note that this constraint is one
of the Bogomol’nyi equations for vortices whenγ = µ [4]. We shall assume that 1− |φ|2
andDiφ decay rapidly as|x| → ∞. Equations (2.4)–(2.7) imply thatD0φ, B andEi decay
similarly.

2.2. Vortices

The above field theory admits vortex solutions. Vortices appear whenever there is a non-trivial
winding of the map between the boundary circle at spatial infinity and the manifold of ground
states of the scalar field, the circle|φ| = 1. The relation between the winding numberN and
the magnetic flux is∫

B d2x = 2πN. (2.8)

N can be interpreted as the vortex number. Henceforth, we supposeN > 0. Later, we define
a gauge invariant vorticityV, whose integral is 2πN . However, the vorticity is not simply
V = B.

Generally, a solution withN vortices is not static, and we wish to understand how the
vortices move. However, it is by now well known that for special values of the couplings a
large space of stable, staticN -vortex solutions exists, for anyN > 0 [18]. These solutions
satisfy first order Bogomol’nyi equations, as well as the second order Ginzburg–Landau field
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equations [4]. For the theory here, Bogomol’nyi vortices occur whenλ = 1 andγ = µ. The
first order Bogomol’nyi equations are

(D1 + iD2)φ = 0 (2.9)

B = 1
2(1− |φ|2). (2.10)

Solutions of these equations also satisfy (2.4)–(2.7), withD0φ andEi vanishing. Bogomol’nyi
vortices do not exert forces on each other, the repulsion of the magnetic fluxes being cancelled
by the scalar attraction, and this is why a static configuration ofN vortices can exist. The
solutions of the Bogomol’nyi equations with winding numberN are uniquely specified by the
unordered zeros of the scalar field, whose number, counted with multiplicity, isN . These zeros
are the vortex positions and we denote them{xs : 16 s 6 N}. The space of solutions, called
theN -vortex moduli space, is therefore topologicallyCN/6N, where6N is the permutation
group onN objects and the two-dimensional real plane is identified with the complex plane
C. TheN -vortex moduli space is a smooth manifold of dimension 2N , despite the apparent
singularities where vortex positions coalesce.

Hassäıneet al have recently discovered stationary Bogomol’nyi-type vortex solutions in
this theory withγ 6= µ [5]. The fields satisfy (2.9) and (2.6), and in additiona0 is proportional
to B. One needsλ = 2γ /µ− γ 2/µ2, andλ must be positive. These vortices are sources for
non-vanishing electric fields. However, we shall not consider these solutions here.

2.3. The reduced Lagrangian for vortex dynamics

We consider the case whereλ is close to one andγ = µ. We are interested in fields which
remain close toN -vortex solutions of the Bogomol’nyi equations, but in which the vortex
positions move slowly. In the moduli space approximation to vortex dynamics, one obtains a
reduced Lagrangian by simply inserting Bogomol’nyi solutions into (2.1) and taking the vortex
positions dependent on time. Let us writeφ as

φ = e
1
2h+iχ . (2.11)

h is gauge invariant, and tends to zero at spatial infinity, but is singular at the vortex positions.
The first Bogomol’nyi equation (2.9) implies that

ai = 1
2εij ∂jh + ∂iχ. (2.12)

From the second Bogomol’nyi equation (2.10), one obtains

∂i∂ih− eh + 1= 4π
N∑
s=1

δ2(x− xs). (2.13)

This is the fundamental gauge invariant equation describing Bogomol’nyi vortices. We assume
this equation holds, even if the vortex positions{xs} are slowly moving.

Let us now suppose that the vortex positions are distinct, which is the generic case. We
shall consider vortex coalescence in section 5.h = log |φ|2 has the following expansion
around the position of thesth vortex:

h = log |x− xs |2 + as + bs · (x− xs) + · · · (2.14)

where{as, bs}are dependent on the positions of the other vortices relative toxs . The usefulness
of this expansion was discovered by Samols [12], developing work of Strachan [15].as plays
no significant role in what follows, butbs does.bs is a measure of the lack of circular symmetry
of h around the vortex, and is exponentially small if the other vortices are distant. After various
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integrations, and suppression of total time derivative terms, one obtains the manifestly gauge
invariant reduced Lagrangian [9]

Lred= 2πγ
N∑
s=1

(
(bs2 + 1

2x
s
2)ẋ

s
1 − (bs1 + 1

2x
s
1)ẋ

s
2

)− V red (2.15)

where an overdot denotes time-derivative. This leads directly to equations of motion for the
vortex positions. The potential (2.3) simplifies for solutions of the Bogomol’nyi equations to
the integral

V red= λ− 1

8

∫ (
1− |φ|2)2 d2x (2.16)

plus a constantπN , and this is a translationally and rotationally invariant function of the vortex
positions. Unfortunately, it appears thatV red cannot be simplified to an explicit expression
depending only on{xs , as, bs}. The functionsbs andV red are not known explicitly as functions
of the relative positions ofN -vortices, but they can be calculated numerically and this has been
performed for two-vortices in [12, 13].

3. Conservation laws in the field theory

The linear and angular momenta for the field theory we are considering here were obtained
in [5]. Here, we give an independent derivation from first principles. Let{ψc} =
{φ, φ̄, a0, a1, a2}, wherec runs from 1–5. If under a variation of the fieldsδψc, the variation of
the Lagrangian density,L, is δL = ∂µX̂µ, then Noether’s theorem associates a conserved
current with such a variation. (Here and below, we suppress the infinitesimal quantity
multiplying such variations.) The Noether current, assuming the summation convention over
the indexc, is

ĵ µ = ∂L
∂(∂µψc)

δψc − X̂µ. (3.1)

By Noether’s theorem∂µĵµ = 0, and it follows that the integral of the time componentĵ0 is
a conserved quantity provided that the spatial components of the currentĵ1 and ĵ2 fall off
sufficiently fast at spatial infinity.

3.1. Energy

The simplest conserved quantity to consider is energy. This is related to invariance under time
translation. Naively, the variations of the fields are given by their time derivatives. However,
one can supplement this by a gauge transformation with the parameter−a0. The variations of
the fields are then

{δψc} = {D0φ,D0φ, 0,−E1,−E2} (3.2)

and the change inL is δL = ∂µXµ, where

X0 = L + γ a0 − µa0B, X1 = −µa0E2, X2 = µa0E1. (3.3)

Using (3.1), the energy density is

j0 = 1

2
B2 +

1

2
DiφDiφ +

λ

8

(
1− |φ|2)2 . (3.4)
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j0 is gauge invariant. Moreover, its integral is conserved, because the spatial components of
the currents

j1 = − 1
2D1φD0φ − 1

2D1φD0φ +BE2 (3.5)

j2 = − 1
2D2φD0φ − 1

2D2φD0φ − BE1 (3.6)

are gauge invariant, and hence decay rapidly at spatial infinity. Thus, the conserved energy is
V , as given in (2.3) (recall that the transport current vanishes).

3.2. Momentum

Let us now find the linear momentumPi , associated with translation in thexi-direction. First,
consider translation in thex1-direction. The naive variations of the fields are given by the
spatial derivatives in thex1-direction. One supplements this by a gauge transformation with
the parameter−a1. The variations of the fields are then

{δψc} = {D1φ,D1φ,E1, 0, B} (3.7)

and the change inL is δL = ∂µX′µ, where

X′0 = −µa1B + γ a1, X′1 = L− µa1E2, X′2 = µa1E1. (3.8)

The density of the linear momentum in thex1-direction, calculated using (3.1), is

j ′0 = −γ (J1 + a1). (3.9)

Notice thatj ′0 is not gauge invariant. Moreover, the spatial components of the currents are

j ′1 = −γ i

2

(
φ̄D0φ − φD0φ

)− 1

2
B2 − 1

2
|D1φ|2 +

1

2
|D2φ|2 +

λ

8

(
1− |φ|2)2 + γ a0 (3.10)

and

j ′2 = − 1
2(D2φD1φ +D2φD1φ). (3.11)

j ′1 is not gauge invariant, and hence does not fall off sufficiently fast at infinity for the integral
of j ′0 to be conserved. The remedy for both problems is to note thatX′µ is not uniquely
defined, but can be altered by adding total derivative terms. One chooses an improvedX̃′µ,
with ∂µX

′µ = ∂µX̃′µ, in such a way that the resulting current is gauge invariant.X̃′µ can be
taken as

X̃′0 = X′0 + γ ∂1(x2a2)− γ ∂2(x2a1) (3.12)

X̃′1 = X′1 + γ ∂2(x2a0)− γ ∂0(x2a2) (3.13)

X̃′2 = X′2 + γ ∂0(x2a1)− γ ∂1(x2a0). (3.14)

UsingX̃′µ, the improved density of the linear momentum in thex1-direction is

j̃ ′0 = −γ (J1 + x2B) (3.15)

and the spatial components of the current are

j̃ ′1 = −γ i

2

(
φ̄D0φ − φD0φ

)− 1

2
B2 − 1

2
|D1φ|2 +

1

2
|D2φ|2 +

λ

8

(
1− |φ|2)2 − γ x2E2

(3.16)

j̃ ′2 = − 1
2(D2φD1φ +D2φD1φ) + γ x2E1. (3.17)

Clearly, j̃ ′1 and j̃ ′2 are now gauge invariant and fall off sufficiently fast at spatial infinity.
Similarly, one can consider translations in thex2-direction. From (3.15) and its analogue for
x2-translations, one concludes that the conserved linear momentum is

Pi = γ
∫
(Ji + εij xjB) d2x. (3.18)
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(The choice of sign, here and in (3.26) below, is deliberate, and ensures agreement between
the conservation laws in the field theory and those in the reduced theory. It is made because
the field variations are due to passive coordinate variations, whereas later we actively vary the
vortex positions in the reduced theory.)

3.3. Angular momentum

Next, let us obtain the conservation law for angular momentum,M, by considering the
generator of rotations,εij xi∂j , combined with a gauge transformation with parameter−εij xiaj .
Here, care is needed to evaluate the Lie derivatives correctly on the scalar field and gauge
potential. The variations of the fields are

{δψc} = {εij xiDjφ, εij xiDjφ, εij xiEj ,−x1B,−x2B}. (3.19)

The change inL is δL = ∂µX′′µ, where

X′′0 = −εij xiaj (µB − γ ),
X′′1 = −x2L− µεij xiajE2,

X′′2 = x1L +µεij xiajE1.

(3.20)

The angular momentum density obtained using (3.1) is

j ′′0 = −γ εij xi(Jj + aj ). (3.21)

Neither this density nor the spatial components of the current are gauge invariant, nor do they
fall off sufficiently fast at spatial infinity. Again, the remedy is to find an improvedX̃′′µ, with
∂µX

′′µ = ∂µX̃′′µ. One may take

X̃′′0 = X′′0 − γ ∂1(a2r
2/2) + γ ∂2(a1r

2/2) (3.22)

X̃′′1 = X′′1− γ ∂2(a0r
2/2) + γ ∂0(a2r

2/2) (3.23)

X̃′′2 = X′′2 − γ ∂0(a1r
2/2) + γ ∂1(a0r

2/2). (3.24)

Then, the improved angular momentum density is

j̃ ′′0 = −γ (εij xiJj − 1
2r

2B) (3.25)

which is clearly gauge invariant. Likewise,j̃ ′′1 and j̃ ′′2 are gauge invariant and do fall off
sufficiently fast. The conserved angular momentum is therefore

M = −
∫
j̃ ′′0 d2x = γ

∫
(εij xiJj − 1

2r
2B) d2x. (3.26)

3.4. Vorticity

Let us now define the vorticity

V = εij ∂iJj +B. (3.27)

Substituting forJi , using (2.7), the vorticity can be written as

V = −iεijDiφDjφ +B(1− |φ|2), (3.28)

which is the definition in [10], and is a gauge invariant generalization of the notion of vorticity
discussed in [11]. In the sector with vortex numberN ,∫

V d2x = 2πN, (3.29)
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using (3.27) and Stokes’ theorem. Integrating by parts, one may express the linear and angular
momenta as the following moments of the vorticity

Pi = γ εij
∫
xjV d2x (3.30)

and

M = −γ
2

∫
r2V d2x. (3.31)

We noted in the introduction that in a first-order dynamical system the linear momentum can
often be taken as a measure of position. Formula (3.30) exemplifies this idea. The components
of momentum are proportional to the components of the centre of vorticity. Equations (3.30)
and (3.29) imply thatRi = − 1

2πNγ εijPj is the centre of vorticity [10], and it does not move.
The conservation of the angular momentum (3.31) shows that no net vorticity can escape

to infinity, assuming that singularities do not form, and therefore a vortex cannot escape to
infinity, unless accompanied by an anti-vortex.

The vorticity has the following interesting property for Bogomol’nyi vortices. Substituting
(2.10) in (2.3), the energy density for Bogomol’nyi vortices is seen to be

EBog = 1
2|Diφ|2 +B2. (3.32)

On the other hand, using both Bogomol’nyi equations, the vorticity (3.28) can be rewritten as

V = |Diφ|2 + 2B2. (3.33)

Thus, for Bogomol’nyi vorticesV = 2EBog.

4. Conservation laws in the reduced dynamics

4.1. The conserved quantities

Conservation laws of the reduced dynamics can be obtained directly fromLred, equation (2.15).
(Note that the discussion of conservation laws at the end of [9] is slightly wrong.) In general,
a variationδxsi = ξ si is a symmetry ifδLred= d

dt X for someX. Noether’s theorem states that

N∑
s=1

∂Lred

∂ẋsi
ξ si −X (4.1)

is then conserved.
A translation of all the vortex positions in thex1-direction is a symmetry. Here, for alls,

δxs1 = 1, δxs2 = 0, (4.2)

andbs andV redare invariant. One finds thatX = −πγ ∑N
s=1 x

s
2, and the conserved component

of momentum is

P red
1 = 2πγ

N∑
s=1

(bs2 + xs2). (4.3)

Similarly, translation in thex2-direction is a symmetry, and

P red
2 = −2πγ

N∑
s=1

(bs1 + xs1) (4.4)
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is conserved. It was shown by Samols that
∑N

s=1 b
s = 0. The linear momentum in the reduced

dynamics is therefore simply

P red
i = 2πγ εij

N∑
s=1

xsj , (4.5)

and directly related to the mean of the vortex positions. Conservation of momentum implies
that the vortices circulate about their fixed mean position.

There is also symmetry under a rotation, where, for alls

δxs1 = −xs2, δxs2 = xs1. (4.6)

V red is invariant, but the rotation leads to the variations

δbs1 = −bs2, δbs2 = bs1. (4.7)

It follows thatLred is strictly invariant, withX = 0, so one has the following conserved angular
momentum in the reduced dynamics

M red= −2πγ
N∑
s=1

( 1
2x

s · xs + bs · xs). (4.8)

This conservation law implies that no vortex can escape to infinity, as is shown in section 5.

4.2. Comparison with the field theory

Here, we compare the conserved quantities in the field theory with the corresponding conserved
quantities obtained directly from the reduced Lagrangian,Lred. We assume that the fields
satisfy the Bogomol’nyi equations at all times, possibly with time-varying vortex positions,
and evaluate the conserved quantities for such fields. This is sensible ifλ is close to 1 and
µ = γ .

First of all, for fields satisfying the Bogomol’nyi equations, the conserved field energy
is E = πN + V red. This is consistent with the reduced dynamics, where the Hamiltonian is
simplyV red (the constantπN is dropped), andV red is conserved.

The main task is to evaluate the moments of vorticity (3.30) and (3.31), defining the linear
and angular momentum. Using (2.11) and (2.12), it can be shown that for solutions of the
Bogomol’nyi equations

Ji = − 1
2εij ∂jheh, B = − 1

2∂i∂ih. (4.9)

The vorticityV, defined in (3.27), becomes

V = 1
2∂i∂i(e

h − h) = 1
2∂i∂i(e

h − h− 1), (4.10)

where the second expression is more useful, as the quantity in brackets vanishes at infinity.
Another expression forV is

V = 1
2∂i(∂ih(e

h − 1)) = 1
2∂i(∂ih∂j ∂jh), (4.11)

where use has been made of (2.13) and temporarily we ignore the logarithmic singularities of
h. Note thatV is a smooth function despite the singularities ofh.

In what follows we still suppose thatφ hasN simple zeros. In order to carry out the
integrals involving moments ofV let us remove, fromR2,N discs of small radiusε centred at
the vortex positions, and call the resulting regionR2

0. AsV is a smooth function, integrations
over the discs will be O(ε2) or smaller, and hence can be neglected in the limitε → 0. Thus,
in the following, the effective region of integration isR2

0, and the singularities ofh may be
ignored in the formulae (4.10) and (4.11) forV.
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LetCs , wheres runs from 1 toN , denote the boundary of the disc around thesth vortex
positionxs and letC0 denote the boundary circle at spatial infinity. Further, letθs be the
polar angle relative toxs with θs = 0 in the positivex1-direction. Then, the outward unit
normal alongCs isns = (cosθs, sinθs) and the coordinates of points onCs can be written as
xi = xsi + εnsi . The differential line element onCs is dl = ε dθs .

Now, using (4.10), and remembering the discussion above, the linear momentum (3.30)
can be written with O(ε2) error as

Pi = γ

2
εij

∫
R2

0

(
xj∂k∂k(e

h − h− 1)
)

d2x. (4.12)

Using Green’s lemma in two dimensions,

Pi = −γ
2
εij

N∑
s=1

∫
Cs

(
xj∂k(e

h − h− 1)− (eh − h− 1)∂kxj
)
nsk dl (4.13)

= −γ
2
εij

N∑
s=1

∫
Cs

(
xj∂kh(e

h − 1)nsk − (eh − h− 1)nsj
)

dl. (4.14)

There is no contribution fromC0, the circle at infinity, as eh − h− 1 vanishes there. In
calculating the integrals alongCs we ignore terms which are O(ε) or smaller. OnCs , one finds
from (2.14) that

∂kh = 2nsk
ε

+ bsk + · · · , (4.15)

and eh = O(ε2). Therefore

Pi = −γ
2
εij

N∑
s=1

∫
Cs

(
−(xsj + εnsj )

(
2nsk
ε

+ bsk

)
nsk + (logε2 + as + 1)nsj

)
dl. (4.16)

Noting that
∫
Cs
nsj dl = 0 and

∫
Cs
nsjn

s
k dl = πεδjk, we conclude that

Pi = 2πγ εij
N∑
s=1

xsj . (4.17)

This reproduces the expression (4.5) for the linear momentum, derived in the reduced dynamics.
We turn now to the angular momentumM. Note that if we used expression (4.10) for the

vorticity V, and applied Green’s lemma to integrater2V, we would require the integral over
the plane ofh. This integral is discussed below, but for the moment we use the alternative
expression (4.11) forV. Then we have the following useful identity

r2V = 1
2r

2∂i(∂ih∂j ∂jh) = 1
2∂iqi, (4.18)

where

qi = r2∂ih∂j ∂jh− 2xj∂jh∂ih + xi∂jh∂jh. (4.19)

We now use the divergence theorem. Asr2V is a smooth function, we follow the same
procedure as in evaluatingPi , namely, removeN small discs centred at the positions of the
vortices. With O(ε2) error,

M = −γ
2

∫
r2V d2x = −γ

4

∫
R2

0

∂iqi d2x = γ

4

N∑
s=1

∫
Cs
qin

s
i dl. (4.20)

Again there is no contribution coming fromC0, the circle at infinity, as∂ih vanishes there. We
decompose the last sum as

M = γ

4

N∑
s=1

(I s1 − 2I s2 + I s3), (4.21)
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where

I s1 =
∫
Cs
(r2∂ih∂j ∂jh)n

s
i dl, (4.22)

I s2 =
∫
Cs
(xj ∂jh∂ih)n

s
i dl, (4.23)

and

I s3 =
∫
Cs
(xi∂jh∂jh)n

s
i dl. (4.24)

Noting from (2.14) that onCs , ∂i∂ih = −1 + O(ε2), we obtain

I s1 =
∫
Cs
(xskx

s
k + 2εnskx

s
k)

(
2

ε
+ bsi n

s
i

)
(−1) dl = −4πxskx

s
k (4.25)

where, as usual, terms of O(ε) or smaller have been neglected. Similarly,

I s2 =
∫
Cs

(
2

ε
xsjn

s
j + 2 +xsj b

s
j

)(
2

ε
+ bsi n

s
i

)
dl = 8π + 6πbsjx

s
j , (4.26)

and

I s3 =
∫
Cs
(xsi n

s
i + ε)

(
4

ε2
+

4

ε
bsjn

s
j + bsj b

s
j

)
dl = 8π + 4πbsjx

s
j . (4.27)

Thus, putting all the above integrals together,

M = −2πγ
N∑
s=1

( 1
2x

s · xs + bs · xs + 1), (4.28)

which apart from a constant additive term agrees with (4.8).
The constant term which appears in (4.28) is an important contribution, and is a

consequence of the careful treatment of the field theory. (Its absence in the reduced dynamics
results from discarding various terms that do not affect the equations of motion.) It implies
that a single vortex situated at the origin has total angular momentum−2πγ . Thus, the vortex
has an intrinsic spin.

4.3. The integral ofh

It is rather remarkable that for Bogomol’nyi vortices, whereh satisfies (2.13) and the boundary
conditionh→ 0 as|x| → ∞, it is possible to evaluate the integral ofh over the plane. The
integral is finite, despite the logarithmic singularities ofh. The result can be derived from the
formula (4.28) forM, by recalculating the integral ofr2V using the expression (4.10) forV.
However, there is a simpler method that we present here.

The result follows from the equation, valid away from the singularities ofh,

2h = ∂i{xj∂jh∂ih− 1
2xi∂jh∂jh + xi(1− eh + h)} − 2(1− eh). (4.29)

This is easily verified, after noting that the first two terms on the right-hand side givexj∂jh∂i∂ih,
which may be replaced by−xj∂jh(1− eh). From (2.13) and (4.9), 1− eh = 2B, so∫

(1− eh) d2x = 4πN. (4.30)

The integral of the rest of the right-hand side of (4.29) is evaluated with the help of the
divergence theorem. There is no contribution from the circle at infinity. The contributions of
the first two terms from the circlesCs have already appeared in (4.23) and (4.24), and their
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values are given by (4.26) and (4.27). There is no contribution from the third term, because its
O(logε) behaviour onCs is not singular enough. Hence∫

h d2x = −2π
N∑
s=1

(bs · xs + 3). (4.31)

In particular, for one vortex
∫
h d2x = −6π .

4.4. Contribution of the supercurrent to the momenta

It is of some interest to separate the contributions of the supercurrent and the magnetic field to
the linear and angular momenta, for fields satisfying the Bogomol’nyi equations. Recall that
the vorticity is

V = VJ +B, (4.32)

where the contribution due to the supercurrent is

VJ = εij ∂iJj . (4.33)

The integral ofVJ over the plane is zero, so the total vorticity, or vortex number, is entirely
due to the magnetic field. From (4.10),

VJ = 1
2∂i∂i(e

h) = 1
2∂i∂i(∂j ∂jh). (4.34)

It is not difficult to show, using similar methods as previously, that fork = 1, 2∫
xkVJ d2x = 0. (4.35)

The supercurrent therefore makes no contribution to the linear momentum, and

Pi = γ εij
∫
xjB d2x. (4.36)

Further, it can be shown that∫
(xk)

2VJ d2x = −4πN. (4.37)

Hence, the supercurrent contribution to the angular momentumM is

MJ = −γ
2

∫
r2VJ d2x = 4πγN, (4.38)

just a constant. The contribution due toB is therefore

MB = −γ
2

∫
r2B d2x = −2πγ

N∑
s=1

(
1
2x

s · xs + bs · xs + 3
)
, (4.39)

and this carries the non-trivial dynamical information.
It is possible to compute the third and the fourth moments ofVJ , for fields satisfying the

Bogomol’nyi equations. One can show, using (4.34) and Green’s lemma, that∫
(xk)

3VJ d2x = −12π
N∑
s=1

xsk . (4.40)

Similarly,∫
(xk)

4VJ d2x = 6
∫
(xk)

2∂j ∂jh d2x = 6
∫ (

∂j ((xk)
2∂jh)− 2∂k(xkh) + 2h

)
d2x, (4.41)

where there is no summation over the indexk. Integrating again, and using (4.31), one finds∫
(xk)

4VJ d2x = −24π
N∑
s=1

(
(xsk)

2 + bs · xs + 3
)
. (4.42)
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5. Coincident vortices

The formula (4.28) for the angular momentum ofN vortices, in the reduced dynamics, assumes
that no pair of vortices coincide. The same applies to some related formulae, for example the
expression (4.31) for the integral ofh.

With care, it is possible to take the limit as a cluster of vortices, or possibly allN vortices,
become coincident. It is simplest to discuss what happens when allN vortices coincide.
Suppose that the positions{xs} are all close together but still distinct, that is 0< |xs−xr | � 1
for each pairr 6= s. In the neighbourhood of these positions, the solution of equation (2.13)
for h is approximately

h =
N∑
s=1

log |x− xs |2 + a + b · x, (5.1)

for some constantsa andb. This is an exact solution if the terms 1− eh in (2.13) are ignored.
The term 1 produces a quadratic correction, and eh is a high-order polynomial producing
smaller corrections. The expansion ofh aboutxs is

h = log |x− xs |2 +
∑
r 6=s

log |xs − xr |2 + a + b · xs

+
∑
r 6=s

2(xs − xr ) · (x− xs)
|xs − xr |2 + b · (x− xs) + O(|x− xs |2). (5.2)

Therefore

bs =
∑
r 6=s

2(xs − xr )
|xs − xr |2 + b (5.3)

with corrections that tend to zero as the vortices coincide. Note thatbs is singular due to the
coalescence of the vortices. Now recall the constraint

∑N
s=1 b

s = 0. The singular terms cancel
in pairs in this sum, sob must vanish.

We can now calculate the angular momentum using expression (5.3) forbs , with b = 0.
We obtain first
N∑
s=1

bs · xs =
N∑
s=1

∑
r 6=s

2(xs − xr ) · xs
|xs − xr |2 =

∑
16r<s6N

2(xs − xr ) · (xs − xr )
|xs − xr |2 = N(N − 1).

(5.4)

Therefore, as allN vortices coincide at the origin, the expression (4.28) for the angular
momentum has the finite limit

M = −2πγN2, (5.5)

which can be interpreted as the spin of theN coincident vortices. In other Chern–Simons
theories, it has also been found thatN coincident vortices have spin proportional toN2 [6].

In the same coincident limit,∫
h d2x = −2πN(N + 2). (5.6)

This result follows from (5.4) and (4.31). Alternatively, it can be obtained directly, by using
the circularly symmetric form of the equation forh, multiplying byr2 dh

dr and integrating, and
using the boundary condition thath ∼ 2N logr asr → 0.

One may generalize the preceeding discussion to the situation where one or more smaller
clusters of vortices form. Singular terms develop inbs , if other vortices coalesce with thesth.
However,

∑
bs and

∑
bs · xs have finite limits.
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The finiteness of the angular momentum as vortices coalesce implies that angular
momentum conservation prevents any vortex escaping to infinity. The first term in the
expression (4.28) forM would diverge if a vortex escaped, but we have now shown that
the second term involving

∑
bs · xs cannot have a compensating divergence even if a vortex

cluster forms. This result is consistent with the more general argument, given earlier, that no
net vorticity can escape to infinity in the field theory.

6. Conclusions

In this paper, we have succeeded in obtaining, from first principles, the conservation laws
of linear and angular momenta in the Schrödinger–Chern–Simons theory of vortex dynamics
proposed in [9]. As for fluid vortices, the linear and angular momenta can be expressed as low
moments of a suitably defined vorticity. Our expressions agree with those in [5] in the absence
of any transport current. The conserved quantities in the presence of a transport current are
those that follow using the Galilean invariance of the dynamics.

For a range of values of the couplings, vortex dynamics in the theory reduces,
approximately, to motion in the moduli space of Bogomol’nyi vortices. The expressions for
the linear and angular momenta in the reduced dynamics have been shown to agree with those
obtained by evaluating the linear and angular momenta in the parent field theory, assuming the
fields satisfy the Bogomol’nyi equations. This agreement was not inevitable, and supports the
use of the moduli space approximation. Various integrals involving the vorticity have been
evaluated explicitly to make the comparison possible. A novel expression for the integral of
h = log |φ|2 has been found. One consequence of the calculations is that each vortex has a
non-zero net spin. AsN vortices coalesce, the total spin isN2 times the spin of one vortex. Our
results can probably be extended to a larger range of couplings, by exploiting the electrically
excited vortex solutions of Hassaı̈neet al [5].

The conservation of linear momentum implies that the centre of vorticity, which becomes
the mean of the vortex positions in the reduced dynamics, does not move. Conservation of
angular momentum implies that net vorticity cannot escape to infinity; in particular, no vortex
can escape to infinity in the reduced dynamics. Recently, there have been numerical studies
of vortices in the theory considered here [16]. The conservation laws should be a useful guide
to the accuracy of such numerical studies.
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