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Abstract: A gas ofN Bogomol’nyi vortices in the Abelian Higgs model is studied on
a compact Riemann surface of genusg and areaA. The volume of the moduli space is
computed and found to depend onN, g andA, but not on other details of the shape of
the surface. The volume is then used to find the thermodynamic partition function and it
is shown that the thermodynamical properties of such a gas do not depend on the genus
of the Riemann surface.

1. Introduction

Solitons are interesting objects to study and it is particularly interesting to study their
dynamics. The moduli space approximation [6] gives an effective description of the
dynamics of solitons at low energy when most of the degrees of freedom are frozen. The
moduli space approximation works as follows: static multi-solitons are parametrized
by the moduli space− the minima of the energy functional. At low energy, the actual
field dynamics can be taken to be close to the moduli space, i.e. near the bottom of the
valley of the energy functional. The dynamics projected onto the moduli space is then the
geodesic motion on the moduli space [13]. For monopoles− solitons in three dimensions
− the moduli space approximation has given important insight into the scattering and
the bound states of the monopoles. It has found important application in proving various
duality conjectures in supersymmetric field theories and in string theory [10].

On a plane, for Bogomol’nyi vortices in the Abelian Higgs model [1]− solitons
in two dimensions− one can similarly describe their scattering [9]. For vortices on a
compact Riemann surface,M , of genusg, one can do more− study their statistical
mechanics [7]. Since the potential energy between the vortices is constant, in the moduli
space approximation evaluation of the partition function of a gas of vortices effectively
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reduces to the computation of the volume of the moduli space. As the moduli space is
Kähler, in order to find the volume, one needs to know the Kähler form or more precisely,
its cohomology class. For the genusg = 0,1 cases, the K̈ahler forms have been computed
in [7, 12], respectively. For the sphere (g = 0) theN -vortex moduli space is the complex
projective spaceCPN . In this case symmetry arguments are enough to find the Kähler
form. On the other hand, for the torus (g = 1), the K̈ahler form is found by exploiting the
fibre bundle structure of theN -vortex moduli space. For genusg ≥ 1 andN ≥ 2g− 1,
theN -vortex moduli space has a bundle structure, where the base is the Jacobian,J , of
the Riemann surface, a torus of real dimension 2g, and the fibre isCPN−g. ForN ≤ g,
theN -vortex moduli space is homeomorphic to a 2N -dimensional analytic subvariety
of the Jacobian. It would be interesting to find a general formula for the Kähler form and,
hence, the volume of the moduli space forN vortices on an arbitrary Riemann surface,
M , of genusg. Here, we will obtain such a formula.

In the next section we will see that the Kähler form is the sum of two parts: one is
related to the K̈ahler form ofM , the other is determined by the vortex interactions. The
cohomology classes of both of these can be determined. This then enables the required
formula for the volume of the moduli space to be computed. It depends onN, g and the
area ofM . The various thermodynamical quantities for a gas of vortices can be deduced
from this. It is found that the statistical mechanics of such a gas is independent of the
genus ofM . This is expected on physical grounds.

This paper is organized as follows. In Sect. 2, we briefly describe the Bogomol’nyi
vortices and the K̈ahler form on the moduli space. In Sect. 3, we present the cohomo-
logical formula for the volume. Then we compare it with the previously computed cases
for vortices on the sphere and the torus. This serves as a check of the volume formula.
Finally, in Sect. 4, we compute the various thermodynamical quantities.

2. Vortices and the Kähler Form on the Moduli Space

(i) Bogomol’nyi vortices. Bogomol’nyi vortices are static, topologically stable, finite
energy solutions of the critically coupled Abelian Higgs model in 2+1 dimensions [4].
We consider vortices on the space-timeR×M , whereM is a compact Riemann surface
of genusg, andR parametrizes ordinary timex0. The metric onR ×M can be taken to
be of the form (locally)

ds2 = dx2
0 − �(x1, x2)(dx2

1 + dx2
2), (2.1)

where� is positive. The Lagrangian density of the model is

L = −1
4
FµνF

µν +
1
2
DµφDµφ− 1

8
(|φ|2 − 1)2, (2.2)

whereφ is a complex Higgs scalar field,Aµ is aU (1) gauge potential,Dµ = ∂µ − iAµ

andFµν = ∂µAν −∂νAµ (µ, ν = 0,1,2). The units are chosen such that both the gauge
field coupling constant and the mass of the Higgs field are unity.

Working in the gaugeA0 = 0, the Lagrangian isL = T − V , where

T =
1
2

∫
M

d2x (Ȧ1Ȧ1 + Ȧ2Ȧ2 + �φ̇ ˙̄φ), (2.3)

V =
1
2

∫
M

d2x

(
�−1F 2

12 +D1φD1φ +D2φD2φ +
�

4
(|φ|2 − 1)2

)
(2.4)
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are respectively the kinetic and the potential energies. Further, we need to impose Gauss’s
law. This arises from the equation of motion ofA0, as the following constraint,

∂1Ȧ1 + ∂2Ȧ2 − � Im(φ̇φ̄) = 0. (2.5)

In the static case the total energy,E = V , can be reexpressed as [1]

E =
1
2

∫
M

d2x

(
(D1 + iD2)φ (D1 + iD2)φ + �−1{F12 +

�

2
(|φ|2 − 1)}2 + F12

)
.

(2.6)

Here we have omitted a total derivative term, which vanishes asM has no boundary.
Bogomol’nyi vortices, which minimize the above energy integral, satisfy the first order
Bogomol’nyi equations

(D1 + iD2)φ = 0, (2.7)

F12 +
�

2
(|φ|2 − 1) = 0. (2.8)

The solutions are classified into topologically stable sectors determined by the first Chern
number [4, 14]

1
2π

∫
M

d2xF12 = N, (2.9)

whereN is an integer. Note that, in general, there is an obstruction to the existence of
N -vortex solutions on a compact surface. This is seen by integrating (2.8) overM . Since
�|φ|2 is non-negative, we deduce the bound, first obtained by Bradlow [2],

4πN ≤ A, (2.10)

whereA is the area ofM . Assuming that this is satisfied, the solutions with the first Chern
numberN are uniquely determined by specifyingN zeros of the Higgs field [2, 14]. Thus,
N can also be interpreted as the vortex number. Since vortices are indistinguishable, the
vortex moduli space,MN , is diffeomorphic to the symmetric product (M )N/SN , where
SN is the permutation group ofN elements. It should be noted thatMN is a smooth
manifold. In the sector with vortex numberN , the potential energy of the vortices is
E = πN .

It is possible to eliminate the gauge potentials from Eq. (2.8), by solving (2.7),
thereby obtaining an equation for|φ|2,

∇2 log |φ|2 − �(|φ|2 − 1) = 4π
N∑
i=1

δ2(x − xi), (2.11)

wherexi denotes the position of the zero of the Higgs field associated with theith vortex
and∇2 = ∂2

1 + ∂2
2.

The kinetic energy (2.3) induces a natural Riemannian metric on the moduli space
[6]. Let qα andgαβ(q)dqαdqβ , where (α, β = 1, · · · ,2N ) denote real coordinates and
the metric onMN . Then, in the moduli space approximation for vortex motion the
Lagrangian can be written as
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L =
π

2
gαβ(q)q̇αq̇β −Nπ, (2.12)

whereπ is the mass of a single vortex. Below, we shall use the analogue of this expression
using complex coordinates for the vortex positions. Although we cannot determinegαβ

explicitly, we shall show that it is possible to compute the total volume ofMN .

(ii) The Kähler form on the moduli space.Samols [9] has obtained an expression
for the metricgαβ and the associated Kähler form on theN -vortex moduli space by
analyzing data around theN zeros of the Higgs field assuming these are distinct. Detailed
computation shows that the metric has a smooth extension to the complete moduli space,
where vortices may coincide. Letz be a local complex coordinate onM . Let the vortex
positions be{zi = x1i + ix2i : i = 1, · · · , N}. Sincezi is a simple zero of the Higgs
field, log|φ|2 has the following series expansion obtained on using (2.11),

log |φ|2 = log |z−zi|2 + ai +
1
2
bi(z − zi) +

1
2
b̄i(z̄ − z̄i) + ci(z − zi)

2

− �(zi)
4

(z − zi)(z̄ − z̄i) + c̄i(z̄ − z̄i)
2 + · · · . (2.13)

From the expression for the kinetic energy Eq. (2.3), Samols shows, after some integra-
tions, that the metric is

ds2 =
N∑

i,j=1

(
�(zi)δij + 2

∂bi
∂z̄j

)
dzidz̄j . (2.14)

Only the coefficients of the linear terms in (2.13) contribute to this formula. Notice that
bi is a function of the positions of allN vortices.

The reality property of the kinetic energy implies that

∂b̄i
∂zj

=
∂bj
∂z̄i

(2.15)

and from this follows the Hermiticity of the metric (2.14). One can then define the
associated K̈ahler form as

ω =
i

2

N∑
i,j=1

(
�(zi) δij + 2

∂bi
∂z̄j

)
dzi ∧ dz̄j . (2.16)

Using (2.15) one can show thatω is a closed (1,1) form. The volume of the moduli space
is

VolN =
1
N !

∫
MN

ωN . (2.17)

The Kähler formω can be divided into two partsω = ω1 + ω2, where

ω1 =
i

2

N∑
i=1

�(zi)dzi ∧ dz̄i (2.18)

is justN copies of the area form induced fromM and
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ω2 = i
N∑

i,j=1

∂bi
∂z̄j

dzi ∧ dz̄j (2.19)

contains information about the relative vortex positions. Our aim is to understand the
topological nature ofω2 and its effect on VolN . If ω2 is ignored, VolN would simply
beAN/N !. Notice that to obtain this result we have chosen a specific normalization
of ω dictated by physics. In fact we can choose any normalization by multiplying the
Lagrangian by an overall constant.

Notice that one can writeω2 = −i∂̄B, whereB is a one-form of degree (1,0),

B =
N∑
i=1

bi(z1, z2, · · · , zN , z̄1, z̄2, · · · , z̄N )dzi. (2.20)

Sincezi are natural coordinates on the Cartesian product (M )N , not on the moduli space
MN , the symmetry of the one-formB is not manifest in the above equation. However,
the indistinguishability of vortices implies that

bi(· · · , zi, · · · , zj , · · · ) = bj(· · · , zj , · · · , zi, · · · ) . (2.21)

Thus, the one-formB is symmetric and hence, defined onMN .
Before proceeding further we would like to point out that the one-formB has poles

wheneverzi = zj for i 6= j. To see this let us consider the functionψ defined in a
coordinate patch as follows:

ψ = log |φ|2 −
N∑
i=1

log |z − zi|2. (2.22)

Notice thatψ is a smooth function, since the singularities of log|φ|2 at the zeros of the
Higgs field have been cancelled by the term

∑N
i=1 log |z − zi|2. Then, aszj approaches

zi, one can see that

bi =
2

zi − zj
+ smooth part, (2.23)

hence,B has poles. It is useful to note that the residues ofB are integers. This fact will
be important later.

One simple way to uncover the topological significance ofB is to determine its
transformation properties under change of coordinates. Let us assume thatM is covered
in such a way that allN vortices lie in one coordinate patchU whose local coordinate
is denoted byz. Theith vortex in this patch has the coordinatezi. Under a holomorphic
coordinate transformation,U goes into another coordinate patchU ′. In terms of the local
coordinatez → z′ = ζ(z); and, alsozi → z′

i = ζ(zi). In the transformed coordinate, the
expansion of log|φ|2 in (2.13) reads

log |φ|2 = log |z′ − z′
i|2 + a′

i+
1
2
b′i(z

′ − z′
i) +

1
2
b̄′i(z̄′ − z̄′

i) + c′i(z
′ − z′

i)
2

− �(z′
i)

4
(z′ − z′

i)(z̄′ − z̄′
i) + c̄′i(z̄′ − z̄′

i)
2 + · · · . (2.24)

Here,b′i = b′i(z
′
1, · · · , z′

i, · · · , z′
N ), writing out the coordinate dependence explicitly.

Remember that|φ|2 is a globally well defined function onM . Thus, on the overlap
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regionU ∩ U ′, by comparing the coefficients of (z − zi) on the right-hand sides of
Eqs. (2.13) and (2.24) one finds

bi = b′i
∂ζi
∂zi

+
∂zi

∂ζi

∂2ζi
∂z2

i

, (2.25)

whereζi = ζ(zi). Notice the striking similarity with the corresponding transformation
of the Levi–Civita connection ofM

0z
zz = 0z′

z′z′
∂z′

∂z
+
∂z

∂z′
∂2z′

∂z2
. (2.26)

This heralds the topological nature ofB. By looking at Eqs. (2.25) and (2.26), one
concludes thatB differs from the complex connection one-form on the co-tangent bundle
of MN by a globally defined one-form. Generically, this one-form is not smooth as it
contains poles. If the poles were absent thenω2 = −i∂̄Bwould have been cohomologous
to the complex Ricci curvature two-form of the Levi–Civita connection on the co-tangent
bundle ofMN . This means thatω2/2π would have been cohomologous to the first Chern
class of the co-tangent bundle.

In what follows we will need to evaluate the integrals ofω2 restricted to some special
complex one-dimensional submanifolds. The integrals, as we will see shortly, receive
two contributions: one is from the residues ofB, and the other is due to the fact thatB,
restricted to these submanifolds, is related to the complex Levi–Civita connection.

First, we consider the submanifold ofN coincident vortices. The solutions withN
coincident vortices are parametrized by a complex one-dimensional submanifold,Mco

of the moduli spaceMN .Mco is diffeomorphic toM and lies inside the JacobianJ . Let
Z be the position of the coincident vortices.|φ|2 now satisfies the equation

4
∂2 log |φ|2
∂z∂z̄

− �(|φ|2 − 1) = 4πNδ2(z − Z) (2.27)

and log|φ|2 has the following series expansion aroundZ:

log |φ|2 = N log |z − Z|2 + a +
1
2
b(z − Z) +

1
2
b̄(z̄ − Z̄) + · · · . (2.28)

Then, the one-formB, restricted toMco, simplifies to

B = b(Z, Z̄)dZ. (2.29)

By a similar analysis as in (2.25), one can determine the transformation properties ofb
under a holomorphic coordinate transformationz → ξ(z). One obtains

b

N
=
b′

N

∂ξ(Z)
∂Z

+
∂Z

∂ξ(Z)
∂2ξ(Z)
∂Z2

. (2.30)

We remark that forN coincident vorticesB does not contain any pole. By comparing
(2.30) with (2.26), one finds thatB/N restricted to the submanifoldMco differs from the
complex Levi–Civita connection one-form ofMco by a smooth, globally defined one-
form. Thus,ω2/N restricted toMco is cohomologous to the complex Ricci curvature
two-form of the co-tangent bundle ofMco. Now, the volume ofMco is

Vco =
∫

Mco

ω =
iN

2

∫
M

(
� + 2

∂b

∂Z̄

)
dZ ∧ dZ̄ = N (A− 4πN (1 − g)) ,

(2.31)



Volume of Vortex Moduli Spaces 597

where use has been made of the Gauss–Bonnet formula for the integral of the curvature
of the Levi–Civita connection,0Z

ZZ , onM

−i
2π

∫
M

(
∂0Z

ZZ

∂Z̄

)
dZ ∧ dZ̄ = 2(1− g) (2.32)

which implies

−i
2πN

∫
M

(
∂b

∂Z̄

)
dZ ∧ dZ̄ = 2(1− g). (2.33)

Notice that
1

2π

∫
Mco

ω2 = 2N2(g − 1). The volumeVco agrees with the volumes previ-

ously computed for the sphere and the torus in [7, 12], respectively.
Secondly, let us consider two clusters of vortices withm and (N − m) vortices,

and letz1 andz2 be their positions onM , respectively. The solutions corresponding to
such clusters are parametrized by a complex two-dimensional submanifold,Mc, of the
moduli spaceMN . We can do a similar analysis as in the above to compute the integral
of ω2 restricted to certain one-dimensional submanifolds ofMc. Restricted toMc, B
can be written as

B = b1dz1 + b2dz2. (2.34)

Notice thatb1 has a pole atz1 = z2 and from the generalization of (2.23) to a pair of vortex
clusters, one finds that Res(b1) = 2(N − m). Following (2.25) one can determine the
transformation properties ofb1 andb2 under holomorphic coordinate changesz1 → z′

1
andz2 → z′

2. These are

b1(z1, z2) = b′1(z′
1, z

′
2)
∂z′

1

∂z1
+m

∂z1

∂z′
1

∂2z′
1

∂z2
1

, (2.35)

b2(z1, z2) = b′2(z′
1, z

′
2)
∂z′

2

∂z2
+ (N −m)

∂z2

∂z′
2

∂2z′
2

∂z2
2

. (2.36)

We will be particularly interested in the case when the second cluster does not move,
i.e. whenz2 is a constant. The vortex motion is then restricted to a one-dimensional
submanifold,M̃ , ofMc. M̃ is diffeomorphic toM .

Now, comparing (2.35) with (2.26) one sees thatB/m, restricted toM̃ , differs from
the complex Levi–Civita connection one-form of̃M by a one-form which contains a
pole atz1 = z2. For the volume ofM̃ one can write

Ṽ =
∫

M̃

ω = Ir + I. (2.37)

Here,Ir is the contribution coming from the residues andI contains the rest of the
contribution. Similarly as in the derivation of (2.31) we find

I = m (A− 4πm(1 − g)) (2.38)

and the residue contribution is

Ir = −2πmRes(b1) = −4πm(N −m). (2.39)
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Thus, the total volume of̃M is

Ṽ = m(A− 4πN + 4πmg). (2.40)

As a consistency check, ifm = N then we have one cluster ofN coincident vortices. In
this case we get back (2.31) by simply puttingm = N in the above formula.

We remark that
1

2π

∫
M̃

ω2 = 2m(mg −N ). Naturally, one would expect that the

(1,1) formω2 belongs toH2(MN ,R), since this is a part of the K̈ahler form ofMN .
However, because of the relationship betweenB and the complex Levi–Civita connection
one-form, combined with the fact that the residues ofB are integers, one sees that the
integral ofω2/2π over any complex one-dimensional submanifold is an integer. This
means thatω2/2π actually belongs toH2(MN ,Z). This information will be used in the
next section in obtaining a cohomological formula forω2.

3. Cohomology and the Volume of the Moduli Space

(i) Cohomology ring of the symmetric products of a Riemann surface.Here, we quote
several theorems without proof which will be used later. This also serves to fix the
notation. The main reference is [5].

We haveH0(M,Z) = Z, H1(M,Z) = Z2g andH2(M,Z) = Z. Let αi, i =
1, · · · ,2g be the generators ofH1(M,Z) andβ be the generator ofH2(M,Z). It is
useful to note thatβ is a normalized area form (i.e. its integral overM is unity) of type
(1,1). The ring structure ofH∗(M,Z) can be described as follows:

αiαj = 0, i 6= j ± g ;αiαi+g = −αi+gαi = β, 1 ≤ i ≤ g. (3.1)

Here, juxtaposition means cup product. Let

αik = 1⊗ · · · ⊗ 1 ⊗ αi ⊗ 1 ⊗ · · · ⊗ 1 ∈ H1((M )N ,Z),
βk = 1⊗ · · · ⊗ 1 ⊗ β ⊗ 1 ⊗ · · · ⊗ 1 ∈ H2((M )N ,Z),

(3.2)

theαi andβ being in thekth place. Then,H∗((M )N ,Z) is generated by theαik and the
βk (1 ≤ i ≤ 2g,1 ≤ k ≤ N ) with the following relations being satisfied:

αikαjk = 0, i 6= j ± g,
αikαi+g,k = −αi+g,kαik = βk, 1 ≤ i ≤ g,
αikαjl = −αjlαik, k 6= l.

(3.3)

Now, define the following symmetric linear combinations:

ξi = αi1 + · · · + αiN , 1 ≤ i ≤ 2g,
η = β1 + · · · + βN .

(3.4)

Further, defineξ′
i = ξi+g (1 ≤ i ≤ g) andσi = ξiξ′

i. Then we have the following result
[5]

Theorem 1. LetM be a compact connected Riemann surface of genus g,MN itsN th

symmetric product. Then, the cohomology ringH∗(MN ,Z) is generated by elements
ξ1, · · · , ξg, ξ′

1, · · · , ξ′
g of degree 1, and an elementη of degree 2, subject to the following

relations:

(a) theξ’s andξ′’s anti-commute with each other and commute withη;
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(b) If i1, · · · , ia, j1, · · · , jb, k1, · · · , kc are distinct integers from 1 tog inclusive, then

ξi1 · · · ξia
ξ′
j1

· · · ξ′
jb

(σk1 − η) · · · (σkc
− η)ηq = 0 (3.5)

provided thata + b + 2c + q = N + 1.

We will also need the following result on the cohomology of some particular sub-
manifolds ofMN . Let ν = (N1 · p1 + · · · + Nk · pk) be a partition ofN such that
p1 > p2 > · · · pk > 0 andN =

∑
piNi. Then there exists a mapping from

∏k
i=1MNi

onto a closed submanifold4(ν) of MN , where4(ν) hasN1 clusters ofp1 coincident
vortices,N2 clusters ofp2 coincident vortices, etc. This mapping is an isomorphism.
For any submanifoldY , let us write [Y ] for its cohomology class inH∗(MN ,Z). Then,
one can show that [5]

Theorem 2. [4(ν)] is the coefficient ofτN1
1 · · · τNk

k in

P ρ−gηN−ρ−g

g∏
i=1

(Pη +Q(η − σi)), (3.6)

where

P = p1τ1 + · · · + pkτk,
Q = (p2

1 − p1)τ1 + · · · + (p2
k − pk)τk,

ρ = N1 + · · · +Nk.
(3.7)

Now, if δs = [4(1 · s + (N − s) · 1)], s > 1, so thatδs is the cohomology class
of the submanifold ofMN which consists of those points which have at leasts vortices
coinciding at one point, then one can show using Theorem 2 that

δs = s(N + (g − 1)(s− 1))ηs−1 − s(s− 1)ηs−2(σ1 + · · · + σg). (3.8)

In terms of the above notation, the submanifoldMco for N coincident vortices corre-
sponds to4(1 ·N ) and its cohomology class is

δN = N (N + (g − 1)(N − 1))ηN−1 −N (N − 1)ηN−2(σ1 + · · · + σg). (3.9)

Further, the total Chern class of the tangent bundle ofMN is (1 +η)N−2g+1 ∏g
i=1(1 +

η − σi). So, the first Chern class of the tangent bundle is

c1(TMN ) = (N − g + 1)η − (σ1 + · · · + σg). (3.10)

(ii) Cohomological formula for the K̈ahler form and the volume of the moduli space1.
An expression for the cohomology class of the two-formω2 can be obtained using the
fact thatω2/2π is a (1,1) form belonging toH2(MN ,Z). Let us determine the generators
ofH2(MN ,Z) which are of type (1,1). One can see thatη is a generator ofH2(MN ,Z),
and this is of type (1,1). The other type (1,1) generator ofH2(MN ,Z) comes from the
pairing of the generators ofH1(MN ,Z). In Appendix (i) we show that it must be of the
form

D′(σ1 + · · · + σg), (3.11)

1 An attempt to obtain a cohomological formula for the Kähler form was first made by P. Shah [11]. His
work has inspired us to look further into the problem from a cohomological point of view.
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whereD′ is a non-zero integer. Thus, the general expression forω2 reads

ω2 = 2πC(g,N )η + 2πD(g,N )(σ1 + · · · + σg), (3.12)

whereC(g,N ) andD(g,N ) are integers.
The coefficientsC(g,N ) andD(g,N ) can be determined by computing the volumes

of the submanifolds describing different types of coincident vortices by cohomological
means and then comparing them with the same volumes previously computed in Sect. 2.
The volume ofMco − which describes the motion ofN coincident vortices− is

Vco =
∫

Mco

(ω1 + ω2) =
∫

MN

(ω1 + ω2) ∧ δN . (3.13)

Using (3.9) and (3.5), one finds

Vco = N (A + 2πC(g,N ) + 2πNgD(g,N )) , (3.14)

where we have used the fact that

ω1 = Aη. (3.15)

Equating this with (2.31), we require

C(g,N ) +NgD(g,N ) = 2N (g − 1). (3.16)

In Appendix (ii) we show that the volume of the submanifoldM̃ − which describes the
motion ofm coincident vortices with the remaining (N − m) vortices coincident and
held fixed at a general position− is

Ṽ = m (A + 2πC(g,N ) + 2πmgD(g,N )) . (3.17)

Comparing this with (2.40) gives

C(g,N ) +mgD(g,N ) = −2N + 2mg. (3.18)

From (3.16) and (3.18), we find

C(g,N ) = −2N, D(g,N ) = 2. (3.19)

Thus, the K̈ahler form onMN is

ω = ω1 + ω2 = (A− 4πN )η + 4π(σ1 + · · · + σg). (3.20)

Notice that

ω2/2π = −2c1(TMN ) + 2(1− g)η, (3.21)

where use has been made of (3.10). This shows thatω2/2π is not just the first Chern
class of the co-tangent bundle ofMN .

Now, putting all the ingredients together, and using (3.5), one finally obtains the
following formula for the volume of the moduli space:

VolN =
∫

MN

ωN

N !
= (A− 4πN )N−g

g∑
i=0

(
(4π)i(A− 4πN )g−ig!

(N − i)!(g − i)!i!

)
. (3.22)
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In the formula aboveN ≥ g. An analogous formula can be written forN < g. The
sum now runs fromi = 0 to i = N , and the factors ofA − 4πN are combined to give
(A − 4πN )N−i in the sum. Notice that the volume is just a function of the area ofM ,
its genus, and the number of vortices. It contains no information about the shape ofM .

(iii) Examples: The volume of the moduli space for the sphere and the torus.For the
sphere (g = 0), (3.22) gives

VolN =
(A− 4πN )N

N !
. (3.23)

This is precisely the same as the formula obtained in [7]. On the other hand for the torus
(g = 1) one gets

VolN =
A(A− 4πN )N−1

N !
. (3.24)

Again this is the same as the formula obtained in [12]. Shah conjectured in [11] that
the volume of the moduli space for any Riemann surface with genusg > 1 is given by
(3.24). We, however, find this conjecture to be not true, e.g. for a Riemann surface of
genusg = 2 andN ≥ 2, the volume is

VolN =
(A2 − 16π2N )(A− 4πN )N−2

N !
(3.25)

which is different from (3.24).

4. Thermodynamics of the Vortices

Following [7], the thermodynamics ofN vortices at temperatureT can be treated using
the Gibbs distribution. The partition function is

Z =
1
h2N

∫
MN

[dp][dq]e−E(p,q)/T , (4.1)

whereh is Planck’s constant,pα are the momenta conjugate to the coordinatesqα and
E is the energy. After doing the Gaussian momentum integrals, the partition function
reduces to

Z = (2π2T/h2)N
∫

MN

[dq](detgαβ)1/2. (4.2)

The second factor in this partition function is just the volume, VolN , of the moduli space
MN .

Using (4.2) and (3.22) one obtains the partition function for a gas ofN vortices on
M

Z =
(A− 4πN )N−g

N !

(
2π2T

h2

)N

R(g,A,N ), (4.3)

where

R(g,A,N ) =
g∑

i=0

(A− 4πN )g−i(4π)ig!N !
(N − i)!(g − i)!i!

. (4.4)
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To obtain the thermodynamic limit, we letN → ∞, assuming that the density of the
gas of vortices is a fixed constant given byN/A = n. Now, a short calculation shows
that, at fixedn,

R(g,A,N ) = Ag
(
1 +O(1/N )

)
. (4.5)

Using Stirling’s formula forN !, whenN is large, one obtains the free energyF =
−T logZ,

F ' −NT
(

log
2eπ2T

h2
− logN + (1− g

N
) log(A− 4πN ) +

g

N
logA +O(1/N )

)
.

(4.6)

The pressureP = −∂F/∂A is

P =
NT

A− 4πN
. (4.7)

The entropyS = −∂F/∂T is

S = N

(
log

(
1 − 4πn

n

)
+ log

(
2e2π2T

h2

))
. (4.8)

These are precisely the same formulae as obtained in [7, 12]. Notice that the genusg
appears nowhere in the formulae for the thermodynamical quantities. Thus, the thermo-
dynamics of a gas of vortices is independent of the topology of the space on which the
vortices are moving.

5. Conclusion

Central to our study of the thermodynamics of a gas of vortices on an arbitrary Riemann
surface is the computation of the volume of the vortex moduli space. The dependence of
the volume on the area of the Riemann surface is quite noticeable. The area dependence
disappears from the volume wheneverA = 4πN − Bradlow’s limit. Then, forN ≤ g
the volume of the moduli space is VolN = (4π)Ng!/[N !(g − N )!], and forN > g
the volume is zero. AtA = 4πN the Higgs field vanishes everywhere and the problem
of solving the Bogomol’nyi equations reduces to the problem of solving for a constant
magnetic field on the Riemann surfaceM . It can be shown that forN = g the moduli
space of this problem is related to the space of flatU (1) connections onM . Time-varying
flat connections have non-trivial kinetic energy, and hence, following the argument of
Sect. 2, there is a metric on this moduli space. The volume of this moduli space is a
topological quantity. It is of interest to see that the volume of this moduli space is equal
to Volg at Bradlow’s limit. This is shown in Ref. [8]. ForN > g, it is also shown in [8],
how VolN tends to zero asA approaches 4πN .

Moduli spaces play an important role in diverse areas of physics and mathematics.
In general it is desirable to know more about moduli spaces, e.g. their volume (compact
cases), metric etc. Computation of the volume of a moduli space is not totally new. In
[16], with a remarkable use of the Verlinde formula [15], Witten computed the volume
of the moduli space of flat connections (for semi-simple gauge groups) on an arbitrary
Riemann surface. In this case, however, the volume is a purely topological quantity.
Thus, it is gratifying to see that in the case of the moduli space of Bogomol’nyi vortices
on a compact Riemann surface one can also explicitly compute the volume. This is
almost topological, but not exactly so, because the volume depends on the area of the
Riemann surface, not on its shape.
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Appendix

(i) A note on a (1,1) form belonging toH2(MN ,Z). Letwρ, (ρ = 1, · · · , g) be a basis
of holomorphic one-forms onM with the period matrix3 = (λρi), (i = 1, · · · ,2g).wρ

is related to the generatorsαi ofH1(M,Z) aswρ =
∑2g

i=1λρiαi. A basis of holomorphic
one-forms on (M )N is given by

wρk = 1⊗ · · · ⊗ 1 ⊗ wρ ⊗ 1 ⊗ · · · ⊗ 1, 1 ≤ ρ ≤ g, 1 ≤ k ≤ N (A.1)

with wρ being in thekth place. Then, a basisζρ of holomorphic one-forms onMN is
given by the following symmetric linear combinations:

ζρ = wρ1 + · · · +wρN , 1 ≤ ρ ≤ g. (A.2)

One sees that

ζρ =
2g∑
i=1

λρiξi. (A.3)

Using the Riemann bilinear relations the period matrix can be written as3t = (I 0),
whereI is the (g× g) unit matrix and0 = (γjl), (j, l = 1, · · · , g) is a symmetric matrix
with Im(0) > 0. Notice that under the diffeomorphisms ofM the elements (γjl) can
change.

Let v ∈ H2(MN ,Z) be expressed as

v =
1
2

2g∑
i,j=1

qijξiξj , (A.4)

whereQ = (qij) is an antisymmetric matrix with integer elements. Then, expressingv in
terms ofζρ one can show that it is of type (1,1) if the following constraint is satisfied [3]:

3tQ−13 = 0. (A.5)

This being a matrix constraint leaves one to freely chooseg2 elements ofQ. However, for
v to be invariant under diffeomorphisms ofM , the above equation must be satisfied for
arbitrary values of (γjl) with Im(γjl) > 0. This can be true only ifQ has the following
form:

Q = D′
(

0 I
−I 0

)
, (A.6)

whereI is the (g×g) unit matrix andD′ is a constant integer. Thus, onMN any integral
(1,1) formv must be of the following type:

v = D′(σ1 + · · · + σg). (A.7)

(ii) Proof of (3.17). Consider the mappingj : M ′ ×M ′′ → MN , given byj(z1, z2) =
(z1, · · · , z1, z2, · · · , z2), wherez1 occursm times andz2 occurs (N − m) times.M ′
andM ′′ are two copies ofM . Forz2 fixed, the mappingj is an isomorphism onto the
submanifoldM̃. One obtains

j?(ξi) = mα′
i ⊗ 1, j?(η) = mβ′ ⊗ 1. (A.8)
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Here,α′
i andβ′ are, respectively, the generators ofH1(M ′,Z) andH2(M ′,Z). Now,∫

M̃

η =
∫

M ′
j?(η) = m

∫
M ′

β′ = m, (A.9)

and, similarly, sinceσi = ξiξi+g,
∫

M̃

σi = m2, 1 ≤ i ≤ g. (A.10)

Thus, ∫
M̃

ω = m(A + 2πC(g,N ) + 2πmgD(g,N )) (A.11)

as claimed.
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