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Abstract: A gas of N Bogomol'nyi vortices in the Abelian Higgs model is studied on

a compact Riemann surface of geuand aread. The volume of the moduli space is
computed and found to depend 8h g and A, but not on other details of the shape of

the surface. The volume is then used to find the thermodynamic partition function and it
is shown that the thermodynamical properties of such a gas do not depend on the genus
of the Riemann surface.

1. Introduction

Solitons are interesting objects to study and it is particularly interesting to study their
dynamics. The moduli space approximation [6] gives an effective description of the
dynamics of solitons at low energy when most of the degrees of freedom are frozen. The
moduli space approximation works as follows: static multi-solitons are parametrized
by the moduli space- the minima of the energy functional. At low energy, the actual
field dynamics can be taken to be close to the moduli space, i.e. near the bottom of the
valley of the energy functional. The dynamics projected onto the moduli space is then the
geodesic motion on the moduli space [13]. For monopelsslitons in three dimensions
— the moduli space approximation has given important insight into the scattering and
the bound states of the monopoles. It has found important application in proving various
duality conjectures in supersymmetric field theories and in string theory [10].

On a plane, for Bogomol'nyi vortices in the Abelian Higgs model f1solitons
in two dimensions- one can similarly describe their scattering [9]. For vortices on a
compact Riemann surfacé/, of genusg, one can do more- study their statistical
mechanics [7]. Since the potential energy between the vortices is constant, in the moduli
space approximation evaluation of the partition function of a gas of vortices effectively
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reduces to the computation of the volume of the moduli space. As the moduli space is
Kahler, in order to find the volume, one needs to know thklKr form or more precisely,
its cohomology class. Forthe genus 0, 1 cases, the &hler forms have been computed
in[7, 12], respectively. For the sphere£ 0) the NV-vortex moduli space is the complex
projective spac€’ Py . In this case symmetry arguments are enough to find tiddds<
form. On the other hand, for the torus£ 1), the Kahler form is found by exploiting the
fibre bundle structure of th&-vortex moduli space. For genygs> 1 andN > 2g — 1,
the N-vortex moduli space has a bundle structure, where the base is the Jadgolin,
the Riemann surface, a torus of real dimensignahd the fibre i€ Py _,. ForN < g,
the N-vortex moduli space is homeomorphic to A2limensional analytic subvariety
of the Jacobian. It would be interesting to find a general formula for #itéé form and,
hence, the volume of the moduli space févortices on an arbitrary Riemann surface,
M, of genusy. Here, we will obtain such a formula.

In the next section we will see that théKler form is the sum of two parts: one is
related to the Khler form of M, the other is determined by the vortex interactions. The
cohomology classes of both of these can be determined. This then enables the required
formula for the volume of the moduli space to be computed. It depend§ grand the
area ofM . The various thermodynamical quantities for a gas of vortices can be deduced
from this. It is found that the statistical mechanics of such a gas is independent of the
genus ofM . This is expected on physical grounds.

This paper is organized as follows. In Sect. 2, we briefly describe the Bogomol'nyi
vortices and the Ehler form on the moduli space. In Sect. 3, we present the cohomo-
logical formula for the volume. Then we compare it with the previously computed cases
for vortices on the sphere and the torus. This serves as a check of the volume formula.
Finally, in Sect. 4, we compute the various thermodynamical quantities.

2. Vortices and the Kahler Form on the Moduli Space

(i) Bogomol’nyi vortices. Bogomol'nyi vortices are static, topologically stable, finite
energy solutions of the critically coupled Abelian Higgs model in 2+1 dimensions [4].
We consider vortices on the space-tiRe M, where)M is a compact Riemann surface
of genusy, andR parametrizes ordinary tim&. The metric orR x M can be taken to

be of the form (locally)

ds® = dxd — Q(x1, 2)(dx? + da), (2.1)
where( is positive. The Lagrangian density of the model is
L= _%FIUJF”V + %D“qﬁD“(b - %(|¢|2 - 1)27 (22)

where¢ is a complex Higgs scalar fieldi,, is al(1) gauge potentialD,, = 0, — (A,
andF,, =0,A, —0,A, (1,v=0,1,2). The units are chosen such that both the gauge
field coupling constant and the mass of the Higgs field are unity.

Working in the gaugely = 0, the Lagrangian i€ =7 — V, where

7= % / d2x (Ar Ay + Apdy + Qo) 23
M

vy dzw(sz-lFfz+Dl¢w+Dz¢w+if<|¢|2—1>2) 2.4)
M

NI =
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are respectively the kinetic and the potential energies. Further, we need to impose Gauss’s
law. This arises from the equation of motion 44§, as the following constraint,

Ay + 0y As — Q Im(¢e) = 0. (2.5)

In the static case the total enerdy= V', can be reexpressed as [1]

£=3 [ @ ((Du+ D6 F DN+ i+ G108 - D)+ o)
M (2.6)

Here we have omitted a total derivative term, which vanishes/dsas no boundary.
Bogomol'nyi vortices, which minimize the above energy integral, satisfy the first order
Bogomol'nyi equations

(D1 +iD2)¢ =0, (2.7

Fip+ %(W —-1)=0 (2.8)

The solutions are classified into topologically stable sectors determined by the first Chern
number [4, 14]

x / 2rFp = N, (2.9)
21 Jur

whereN is an integer. Note that, in general, there is an obstruction to the existence of
N-vortex solutions on a compact surface. This is seen by integrating (2.8)tHv8ince
Q|¢|? is non-negative, we deduce the bound, first obtained by Bradlow [2],

4rN < A, (2.10)

whereA isthe area of\/. Assuming that this is satisfied, the solutions with the first Chern
numberN are uniquely determined by specifyingzeros of the Higgs field [2, 14]. Thus,
N can also be interpreted as the vortex number. Since vortices are indistinguishable, the
vortex moduli spacel/y, is diffeomorphic to the symmetric produdt)”Y /Sx, where
Sy is the permutation group aV elements. It should be noted thafy is a smooth
manifold. In the sector with vortex numbé¥, the potential energy of the vortices is
E =7nN.

It is possible to eliminate the gauge potentials from Eq. (2.8), by solving (2.7),
thereby obtaining an equation fa#|?,

N
V2log|g|* — Q(¢|* — 1) = 47 Y 6%(x — Xy), (2.11)

=1

wherex; denotes the position of the zero of the Higgs field associated witf{'thertex
andV? = 92 + 95.

The kinetic energy (2.3) induces a natural Riemannian metric on the moduli space
[6]. Let g, andg,5(q)dg™dq®, where ¢, 3 = 1,--- ,2N) denote real coordinates and
the metric onM . Then, in the moduli space approximation for vortex motion the
Lagrangian can be written as
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T o -
L= Egaﬁ(Q)qlqﬂ — N, (2.12)

wherer is the mass of a single vortex. Below, we shall use the analogue of this expression
using complex coordinates for the vortex positions. Although we cannot detegyne
explicitly, we shall show that it is possible to compute the total voluma&/gf.

(i) The Kahler form on the moduli space.Samols [9] has obtained an expression

for the metricg,s and the associatedakler form on theV-vortex moduli space by
analyzing data around thé zeros of the Higgs field assuming these are distinct. Detailed
computation shows that the metric has a smooth extension to the complete moduli space,
where vortices may coincide. Letbe a local complex coordinate dd. Let the vortex
positions be{z; = xq; +ixp; 14 = 1,---, N}. Sincez; is a simple zero of the Higgs

field, log|#|? has the following series expansion obtained on using (2.11),

1 1-_ _
log |¢|2 = |0g|z—zi\2 +a; + ébz(z —z)+ ébz(z —z) *eilz — z)?

Q(z)
4

From the expression for the kinetic energy Eq. (2.3), Samols shows, after some integra-
tions, that the metric is

(z—z)(z - z)+ci(z =z +--- . (2.13)

N
ab; _
ds? =" (Q(zi)(sij + 282_) dzdz;. (2.14)

i,5=1

Only the coefficients of the linear terms in (2.13) contribute to this formula. Notice that
b; is a function of the positions of alV vortices.
The reality property of the kinetic energy implies that

db; _ Ob;
dz; 0z

(2.15)

and from this follows the Hermiticity of the metric (2.14). One can then define the
associated Ehler form as

P & b,
w=5 > (Q(zi) Sij + 262—) dz; A dz;. (2.16)

4,j=1

Using (2.15) one can show thais a closed (1,1) form. The volume of the moduli space
is

—_ 1 N
Vol y = N!/MNW . (2.17)

The Kahler formw can be divided into two parts = w; + w», where

. N
i _
wi= 5 5:1 Q(z))dz; N dz; (2.18)

is just V copies of the area form induced frald and
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N ob,
wp =i Z 8—Z_;dzi Adz; (2.19)
4,7=1
contains information about the relative vortex positions. Our aim is to understand the
topological nature ofu, and its effect on Val. If w, is ignored, Vol would simply
be AN /N!. Notice that to obtain this result we have chosen a specific normalization
of w dictated by physics. In fact we can choose any normalization by multiplying the
Lagrangian by an overall constant. _
Notice that one can write, = —i0B, whereB is a one-form of degree (1,0),

N
B:Zbi(217227"' 7ZN72_lu'Z_27"' 7Z_N)dzl (220)
i=1

Sincez; are natural coordinates on the Cartesian produtt{, not on the moduli space
My, the symmetry of the one-form8 is not manifest in the above equation. However,
the indistinguishability of vortices implies that

bz( S 2yttt ,Zj7"'):bj("',zj,"' ’Z“...). (221)

Thus, the one-fornB is symmetric and hence, defined by .

Before proceeding further we would like to point out that the one-fdrimas poles
wheneverz; = z; for i 7 j. To see this let us consider the functigndefined in a
coordinate patch as follows:

N
¥ =log|g[> = > log|z — z. (2.22)
=1
Notice thaty is a smooth function, since the singularities of Jof at the zeros of the

Higgs field have been cancelled by the teEjzl log|z — 2;|%. Then, as;; approaches
z;, One can see that

b; = 2 + smooth part (2.23)
Zi — Zj
hence,B has poles. It is useful to note that the residueB aire integers. This fact will
be important later.

One simple way to uncover the topological significanceBoifs to determine its
transformation properties under change of coordinates. Let us assumé ihabvered
in such a way that allV vortices lie in one coordinate patéhwhose local coordinate
is denoted by:. Thei™ vortex in this patch has the coordinate Under a holomorphic
coordinate transformatiof, goes into another coordinate patéh In terms of the local
coordinate: — 2z’ = ((z); and, alsa;; — z! = ((z;). In the transformed coordinate, the
expansion of logy|? in (2.13) reads

1 1= - =
l0g |67 = log|2’ — 212 + apSb(=' — =)+ SH( — =)+ (! — 21

Q(z! = AL TS5
- %( — ) =) — P (2:24)
Here,b, = bi(z1, -, 2, ,2%), writing out the coordinate dependence explicitly.

Remember thatp|? is a globally well defined function on/. Thus, on the overlap
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regionU N U’, by comparing the coefficients of - z;) on the right-hand sides of
Egs. (2.13) and (2.24) one finds

) - 92¢

b, :b,ag . 821%’

where(; = ((z;). Notice the striking similarity with the corresponding transformation
of the Levi—Civita connection o/

(2.25)

R o 02 0z 0%
Fee=low 0z 07 02

This heralds the topological nature 6f By looking at Egs. (2.25) and (2.26), one
concludes thaB differs from the complex connection one-form on the co-tangent bundle
of My by a globally defined one-form. Generically, this one-form is not smooth as it
contains poles. If the poles were absent thewr —i0 B would have been cohomologous
to the complex Ricci curvature two-form of the Levi—Civita connection on the co-tangent
bundle ofM . This means that, /2 would have been cohomologous to the first Chern
class of the co-tangent bundle.

In what follows we will need to evaluate the integralswgfrestricted to some special
complex one-dimensional submanifolds. The integrals, as we will see shortly, receive
two contributions: one is from the residuesi®fand the other is due to the fact that
restricted to these submanifolds, is related to the complex Levi—Civita connection.

First, we consider the submanifold &f coincident vortices. The solutions wifki
coincident vortices are parametrized by a complex one-dimensional submanifgld,
of the moduli spacé/y. M., is diffeomorphic toM/ and lies inside the Jacobiah Let
Z be the position of the coincident vortices|? now satisfies the equation

4P loglof?
020z

and log|¢|? has the following series expansion aroufid

(2.26)

—Q(|¢]> = 1) = 4Nz — Z) (2.27)

log|¢p[2= Nlog|z — Z|* +a+ %b(z —7)+ %5(2— D+ . (2.28)
Then, the one-forni, restricted tall,.,, simplifies to
B=b(Z,2)dZ. (2.29)
By a similar analysis as in (2.25), one can determine the transformation propetiies of
under a holomorphic coordinate transformations £(z). One obtains
b _V o2, 97 P2)
N N 8z 09¢Z2) 0z2
We remark that fofV coincident vortices3 does not contain any pole. By comparing
(2.30) with (2.26), one finds th@ /N restricted to the submanifold,., differs from the
complex Levi—-Civita connection one-form éf., by a smooth, globally defined one-

form. Thus,w,/N restricted to)M., is cohomologous to the complex Ricci curvature
two-form of the co-tangent bundle éf.,. Now, the volume of\/., is

(2.30)

N _
‘/co:/ w:l—/ (Q‘l‘Z%)dZ/\dZ:N(A—47TN(1_g))7
M., 2 Ju 07z (2.31)
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where use has been made of the Gauss—Bonnet formula for the integral of the curvature
of the Levi—Civita connectior;Z ,, on M

-t 0%z dZ AdZ =2(1— g) (2.32)
2r |y \ oz - g '
which implies
—i b -
N /., (52) dZ NdZ = 2(1— g). (2.33)

. 1 . .

Notice thatz— / wp = 2N?(g — 1). The voluméY,, agrees with the volumes previ-
T J Meo

ously computed for the sphere and the torus in [7, 12], respectively.

Secondly, let us consider two clusters of vortices withand (V — m) vortices,
and letz; andz; be their positions o/, respectively. The solutions corresponding to
such clusters are parametrized by a complex two-dimensional submanifgldf the
moduli spacel/ . We can do a similar analysis as in the above to compute the integral
of wy restricted to certain one-dimensional submanifoldd/&f Restricted taV/., B
can be written as

B = bidz1 + badzo. (234)

Notice thab, has apole at; = 2z, and from the generalization of (2.23) to a pair of vortex
clusters, one finds that Rés] = 2(V — m). Following (2.25) one can determine the
transformation properties &f andb, under holomorphic coordinate changgs— z;
andz; — z5. These are

/ 2./
021 N 021 0°2;

b = by(21, 25 — 2.35
l(Zlv 22) ]_(Zjl_v 22) 62’1 m@z’l 82’]2_ ) ( )
025 Ozp 022}

We will be particularly interested in the case when the second cluster does not move,
i.e. whenz; is_a constant. The vortex motion is then restricted to a one-dimensional
submanifold, M, of M.. M is diffeomorphic toM. _

Now, comparing (2.35) with (2.26) one sees thdim, restricted tal/, differs from
the complex Levi-Civita connection one-form &f by a one-form which contains a
pole atz; = z,. For the volume of\/ one can write

f/:/ w=1I,+1. (2.37)
M

Here, I,. is the contribution coming from the residues ahdontains the rest of the
contribution. Similarly as in the derivation of (2.31) we find

I=m(A—-4rm(l - g)) (2.38)
and the residue contribution is

I, = —2rmResp1) = —4am(N — m). (2.39)
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Thus, the total volume aff is
V =m(A — 47N + 4rmg). (2.40)

As a consistency check,qif. = NV then we have one cluster &f coincident vortices. In
this case we get back (2.31) by simply putting= NV in the above formula.

We remark that% / wy = 2m(mg — N). Naturally, one would expect that the
M
(1,1) formw, belongs toH?(My, R), since this is a part of the &ler form of M.
However, because of the relationship betwBaand the complex Levi—Civita connection
one-form, combined with the fact that the residueBddre integers, one sees that the
integral ofw,/27 over any complex one-dimensional submanifold is an integer. This
means that, /2r actually belongs td7?(My, Z). This information will be used in the
next section in obtaining a cohomological formula éor

3. Cohomology and the Volume of the Moduli Space

(i) Cohomology ring of the symmetric products of a Riemann surfatere, we quote
several theorems without proof which will be used later. This also serves to fix the
notation. The main reference is [5].

We have HO(M,Z) = zZ, HYM,Z) = Z% and H*(M,Z) = Z. Let oy, i =
1,---,2g be the generators dff(M,Z) and 3 be the generator off?(M, Z). It is
useful to note that is a normalized area form (i.e. its integral ovris unity) of type
(1,1). The ring structure aff *(M, Z) can be described as follows:

a;a; =0, 1759 jaqueg = —urgay =5, 1 <0< g. (3.2)
Here, juxtaposition means cup product. Let

=10 - 100,19 ---®1e H(M)V, 2),

B =1o- @lefele.o1le B((MY,2), (3-2)

thea; andg being in thek™ place. ThenH*((M)Y, Z) is generated by the;;, and the
G (1<1<2g,1< k< N)with the following relations being satisfied:

agpagr, =0, i Fj+g, _
QikQirg k = —Qing ik = B, 1 <10 < g, (3.3)
(73 e 71/ = —0y 0, k ?l

Now, define the following symmetric linear combinations:

L =aupt-tay, 1<i<2g,
n=0%+---+pN.

Further, defing; = &+, (1 <t < g) ando; = &;¢;. Then we have the following result

[5]

Theorem 1. Let M be a compact connected Riemann surface of gendiggjts N
symmetric product. Then, the cohomology rilig(My, Z) is generated by elements
1,0+, &g, &1, 5 &, of degree 1, and an elemepof degree 2, subject to the following
relations:

(3.4)

(a) the&’s and&”’s anti-commute with each other and commute with
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(b) Ifiq, - ,iq, J1,° -, Jb, k1, , ke are distinct integers from 1 tginclusive, then

i+ &iu &y 6 (Ony — 1)+ (o, —m)n? =0 (3.5
provided thata + b+ 2c+g= N + 1.

We will also need the following result on the cohomology of some particular sub-
manifolds of M. Letv = (N1 - p1 +--- + N - pi) be a partition of NV such that
p1>p2 > ---pr > 0andN = > p;N;. Then there exists a mapping froﬁule My,
onto a closed submanifold (v) of My, where/A(v) hasN; clusters ofp; coincident
vortices, N, clusters ofp, coincident vortices, etc. This mapping is an isomorphism.
For any submanifold”, let us write [Y'] for its conomology class itf “(My, Z). Then,
one can show that [5]

Theorem 2. [A(v)] is the coefficient of-1N1 e T]ivk in

g
prrogN=e [[(Pn+ Qn — o2)), (3.6)

=1
where

P=pim+-- +ppTs,

Q=02 —p)ri+-+®2 — pr)T, (3.7)
p =Ni+---+Np..

Now, if 6 = [A(1-s+ (N — s)-1)], s > 1, so thatd, is the cohomology class
of the submanifold of\/ ;; which consists of those points which have at leagtrtices
coinciding at one point, then one can show using Theorem 2 that

0= s(N+(g = 1)(s = 1))" = s(s = 1" o1+ + ). (3:8)

In terms of the above notation, the submanifalf}, for N coincident vortices corre-
sponds to\(1 - N) and its cohomology class is

SN =N+ =WV =" = N(N =1 Hor+---+0,).  (3.9)

Further, the total Chern class of the tangent bundl@/gfis (1 +n)N ~20*1 T, (1+
n — ;). So, the first Chern class of the tangent bundle is

a(TMy)=(N —g+ 1 —(o1+--- +0y). (3.10)

(i) Cohomological formula for the &hler form and the volume of the moduli space
An expression for the cohomology class of the two-fasgncan be obtained using the
fact thatw, /27 is a (1,1) form belonging té2(My, Z). Let us determine the generators
of H?(My, Z) which are of type (1,1). One can see thas a generator off (M, Z),
and this is of type (1,1). The other type (1,1) generatalHé(M , Z) comes from the
pairing of the generators @f1(My, Z). In Appendix (i) we show that it must be of the
form

D'(o1+- - +0y), (3.11)

1 An attempt to obtain a cohomological formula for théier form was first made by P. Shah [11]. His
work has inspired us to look further into the problem from a cohomological point of view.
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whereD’ is a non-zero integer. Thus, the general expressionfoeads
wz =2rC(g, N)n+2rD(g, N)(o1 + - - + o), (3.12)

whereC(g, N) andD(g, N) are integers.

The coefficient€’(g, N) andD(g, N) can be determined by computing the volumes
of the submanifolds describing different types of coincident vortices by cohomological
means and then comparing them with the same volumes previously computed in Sect. 2.
The volume ofM ., — which describes the motion éf coincident vortices- is

Vo, / @red= [ @renoy (3.13)

Using (3.9) and (3.5), one finds
Voo = N (A +27C(g, N) + 2rNgD(g, N)), (3.14)
where we have used the fact that
wy = An. (3.15)
Equating this with (2.31), we require
C(g,N)+ NgD(g, N) =2N(g — 1). (3.16)

In Appendix (i) we show that the volume of the submanifdltl— which describes the
motion of m coincident vortices with the remainingV(— m) vortices coincident and
held fixed at a general positionis

V =m (A +27C(g, N) + 2rmgD(g, N)). (3.17)
Comparing this with (2.40) gives
C(g, N) +mgD(g, N) = —2N + 2mg. (3.18)
From (3.16) and (3.18), we find
C(g,N)=—2N, D(g,N)=2. (3.19)
Thus, the Khler form onM  is
w=witwr = (A—4nN)n+4n(oL+---+0y). (3.20)
Notice that
wo/2m = =2c1(T'Mp) + 2(1— g)n, (3.22)

where use has been made of (3.10). This showsuth&r is not just the first Chern
class of the co-tangent bundle bfy .

Now, putting all the ingredients together, and using (3.5), one finally obtains the
following formula for the volume of the moduli space:

Vol y = /N O A= aryN zg: (WV(A - 4”N?g,i9!> . (3.22)
=0

v N! (N = )l(g — )il
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In the formula aboveV > ¢. An analogous formula can be written fof < ¢. The
sum now runs from = 0 to7 = IV, and the factors ofi — 47N are combined to give
(A — 47 N)V—%in the sum. Notice that the volume is just a function of the ares/of
its genus, and the number of vortices. It contains no information about the shape of

(iif) Examples: The volume of the moduli space for the sphere and the tdfasthe
sphere ¢ = 0), (3.22) gives

(A —4rN)N
NTTTTN

This is precisely the same as the formula obtained in [7]. On the other hand for the torus
(g = 1) one gets

Vol (3.23)

A(A — 4rN)N-L
Voly = % (3.24)
Again this is the same as the formula obtained in [12]. Shah conjectured in [11] that
the volume of the moduli space for any Riemann surface with genud. is given by
(3.24). We, however, find this conjecture to be not true, e.g. for a Riemann surface of
genusg = 2 andN > 2, the volume is

(A% — 1672N)(A — 4rN)N-2

VO|N = N

(3.25)

which is different from (3.24).

4. Thermodynamics of the Vortices

Following [7], the thermodynamics @f vortices at temperatufg can be treated using
the Gibbs distribution. The partition function is

z= L / [dpl[dg]eZ®/T, @.1)
h’ My

whereh is Planck’s constanp,, are the momenta conjugate to the coordingteand
E is the energy. After doing the Gaussian momentum integrals, the partition function
reduces to

2= @1/ [ dadeta) 2 (4.2)
Mn
The second factor in this partition function is just the volume y\Malf the moduli space
M.
Using (4.2) and (3.22) one obtains the partition function for a ga§ @brtices on
M

A—4rN)YN=9 2727\ Y
2= Nl) ( h2 ) R(g. A, N, 4.3)

where

(A — 47 N)9~(47)ig! N
(N = )l(g — i)l

g
R(g, A,N)=> (4.4)
i=0
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To obtain the thermodynamic limit, we I& — oo, assuming that the density of the
gas of vortices is a fixed constant given By A = n. Now, a short calculation shows
that, at fixedn,

R(g9,A,N)=A? (1+0O(1/N)). (4.5)

Using Stirling’s formula forN!, when N is large, one obtains the free enerfjy=
—Tlog Z,

2em?T g g
F~—-NT (Iog 7 logN + (1 - N) log(A — 47 N) + N log A + O(l/N)) .
(4.6)
The pressurd® = —0F/0A s
NT
e @7

The entropyS = —0F /0T is

S=N (Iog (1 :”") +log <2€2h7;2T>) . (4.8)

These are precisely the same formulae as obtained in [7, 12]. Notice that theggenus
appears nowhere in the formulae for the thermodynamical quantities. Thus, the thermo-
dynamics of a gas of vortices is independent of the topology of the space on which the
vortices are moving.

5. Conclusion

Central to our study of the thermodynamics of a gas of vortices on an arbitrary Riemann
surface is the computation of the volume of the vortex moduli space. The dependence of
the volume on the area of the Riemann surface is quite noticeable. The area dependence
disappears from the volume whenever= 47 N — Bradlow’s limit. Then, forN < g
the volume of the moduli space is \pl= (47)Vg!/[N!(g — N)!], and for N > ¢
the volume is zero. Al = 47 N the Higgs field vanishes everywhere and the problem
of solving the Bogomol'nyi equations reduces to the problem of solving for a constant
magnetic field on the Riemann surfaté It can be shown that falV = g the moduli
space of this problem is related to the space otfldt) connections oi/. Time-varying
flat connections have non-trivial kinetic energy, and hence, following the argument of
Sect. 2, there is a metric on this moduli space. The volume of this moduli space is a
topological quantity. It is of interest to see that the volume of this moduli space is equal
to Vol, at Bradlow’s limit. This is shown in Ref. [8]. Fa¥ > ¢, itis also shown in [8],
how Vol tends to zero ad approaches#N.

Moduli spaces play an important role in diverse areas of physics and mathematics.
In general it is desirable to know more about moduli spaces, e.g. their volume (compact
cases), metric etc. Computation of the volume of a moduli space is not totally new. In
[16], with a remarkable use of the Verlinde formula [15], Witten computed the volume
of the moduli space of flat connections (for semi-simple gauge groups) on an arbitrary
Riemann surface. In this case, however, the volume is a purely topological quantity.
Thus, it is gratifying to see that in the case of the moduli space of Bogomol'nyi vortices
on a compact Riemann surface one can also explicitly compute the volume. This is
almost topological, but not exactly so, because the volume depends on the area of the
Riemann surface, not on its shape.
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Appendix

(i) A note on a (1,1) form belonging t§%(My, Z). Letw,, (p=1,---,g) be a basis
of holomorphic one-forms of/ with the period matrixA = (A,;), (i =1,---,2¢). w,
is related to the generatats of H(M, Z) asw, = Zfﬁl Apicy;. A basis of holomorphic
one-forms on {1)" is given by

Wor 1R ®1Qw,1Q---®1, 1<p<g, 1<k<N (A1)

with w, being in thek™ place. Then, a basig, of holomorphic one-forms o/ is
given by the following symmetric linear combinations:

Cp:wpl+"'+pr71§p§g- (AZ)
One sees that
2g
Cp = Z Api&i- (A.3)
i=1

Using the Riemann bilinear relations the period matrix can be writte~'as (I T),
wherel is the ¢ x g) unit matrix andl" = (v;;), (j,{ =1,-- -, ¢) iS a symmetric matrix
with Im(T") > 0. Notice that under the diffeomorphisms &f the elements;;) can
change.

Letv € H?(My,Z) be expressed as

1 &
V=3 Z 2ij&i&;, (A.4)
i,7=1
where( = (g;;) is an antisymmetric matrix with integer elements. Then, expressimg
terms of¢, one can show that it is of type (1,1) if the following constraint is satisfied [3]:

AtQ7IA = 0. (A.5)

This being a matrix constraint leaves one to freely chgésgements of). However, for

v to be invariant under diffeomorphisms &f, the above equation must be satisfied for
arbitrary values of+{;;) with Im(~;;) > 0. This can be true only i) has the following
form:

Q:D’<_Olé>, (A.6)

wherel is the g x ¢) unit matrix andD’ is a constant integer. Thus, ddiy any integral
(1,1) formwv must be of the following type:

v=D'(o1+---+0y). (A7)
(i) Proof of (3.17). Consider the mapping: M’ x M" — My, given byj(z1, z2) =
(21, , 21,22, , 22), Wherez; occursm times andz, occurs (V — m) times. M’

and " are two copies of\/. For z, fixed, the mapping is an isomorphism onto the
submanifold) . One obtains

7 &) =me; @1, j*(n) =mpf' @ 1. (A.8)
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Here,a/ and’ are, respectively, the generatorstdt(M’, Z) and H?(M', Z). Now,

/~n=/ F=m [ 5 =m (A.9)
N M M
and, similarly, sincer; = &£+,
/~ ai=m2, 1<i<g. (A.10)
b

Thus,

/N w=m(A+2rC(g, N)+2rmgD(g, N)) (A.12)

i

as claimed.
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